cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264080 a(n) = 6*F(n)*F(n+1) + (-1)^n, where F = A000045.

Original entry on oeis.org

1, 5, 13, 35, 91, 239, 625, 1637, 4285, 11219, 29371, 76895, 201313, 527045, 1379821, 3612419, 9457435, 24759887, 64822225, 169706789, 444298141, 1163187635, 3045264763, 7972606655, 20872555201, 54645058949, 143062621645, 374542805987, 980565796315
Offset: 0

Views

Author

Bruno Berselli, Nov 03 2015

Keywords

Comments

a(n) is prime for n = 1, 2, 5, 7, 14, 15, 29, 40, 49, 57, 70, 87, 105, 127, 175, 279, 362, 647, 727, ...

Crossrefs

Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n: A226205 (k=1); A236428 (k=2); A014742 (k=3); A061647 (k=4); A002878 (k=5).

Programs

  • Magma
    [6*Fibonacci(n)*Fibonacci(n+1)+(-1)^n: n in [0..30]];
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,5,13>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 28 2016
  • Mathematica
    Table[6 Fibonacci[n] Fibonacci[n + 1] + (-1)^n, {n, 0, 30}]
    LinearRecurrence[{2,2,-1},{1,5,13},30] (* Harvey P. Dale, Jul 12 2019 *)
  • Maxima
    makelist(6*fib(n)*fib(n+1)+(-1)^n, n, 0, 30);
    
  • PARI
    for(n=0, 30, print1(6*fibonacci(n)*fibonacci(n+1)+(-1)^n", "));
    
  • PARI
    a(n) = round((2^(-n)*(-(-2)^n-3*(3-sqrt(5))^n*(-1+sqrt(5))+3*(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((1+3*x+x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 28 2016
  • Sage
    [6*fibonacci(n)*fibonacci(n+1)+(-1)^n for n in (0..30)]
    

Formula

G.f.: (1+3*x+x^2) / ((1+x)*(1-3*x+x^2)). - Corrected by Colin Barker, Sep 28 2016
a(n) = -a(-n-1) = 2*a(n-1) + 2*a(n-2) - a(n-3) for all n in Z.
a(n) = L(2*n+1) + F(n)*F(n+1) = A002878(n) + A001654(n). See similar identity for A061647.
a(n) = A001654(n+1) + 3*A001654(n) + A001654(n-1).
a(n) - a(n-1) = 2*A099016(n) with a(-1)=-1.
a(n) + a(n-1) = 2*A097134(n) for n>0.
Sum_{i>=0} 1/a(i) = 1.3232560865206157372628688449331...
a(n) = (2^(-n)*(-(-2)^n-3*(3-sqrt(5))^n*(-1+sqrt(5))+3*(1+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Sep 28 2016
E.g.f.: (1/5)*exp(-x)*(-1 + 6*exp(5*x/2)*(cosh((sqrt(5)*x)/2) + sqrt(5)*sinh((sqrt(5)*x)/2))). - Stefano Spezia, Dec 09 2019

A095310 a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).

Original entry on oeis.org

1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1

Views

Author

Gary W. Adamson, Jun 02 2004

Keywords

Comments

Let M = the 3 X 3 matrix [1 1 1 / 3 1 0 / 1 0 0], then M^n * [1 0 0] = [a(n) q a(n-1)] where q is another sequence with the same recursion rule.

Examples

			a(6) = 316 = 2*107 + 3*38 - 12.
a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)

Formula

G.f.: (-x^2+3*x+1)/(x^3-3*x^2-2*x+1). - Harvey P. Dale, Jan 25 2014

Extensions

Corrected and extended by Robert G. Wilson v, Jun 05 2004
Edited by N. J. A. Sloane, Jun 07 2004
Showing 1-2 of 2 results.