A061673 Even numbers k such that k+1 and k-1 are both composite.
26, 34, 50, 56, 64, 76, 86, 92, 94, 116, 118, 120, 122, 124, 134, 142, 144, 146, 154, 160, 170, 176, 184, 186, 188, 202, 204, 206, 208, 214, 216, 218, 220, 236, 244, 246, 248, 254, 260, 266, 274, 286, 288, 290, 296, 298, 300, 302, 304, 320, 322, 324, 326
Offset: 1
Examples
a(3)=50 because 50 - 1 = 49 and 50 + 1 = 51 and both 49 and 51 are composite.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Twin Composites
Programs
-
GAP
Filtered([0,2..340],n->not IsPrime(n-1) and not IsPrime(n+1)); # Muniru A Asiru, Jul 01 2018;
-
Haskell
a061673 n = a061673_list !! (n-1) a061673_list = filter bothComp [4,6..] where bothComp n = (1 - a010051 (n-1)) * (1 - a010051 (n+1)) > 0 -- Reinhard Zumkeller, Feb 27 2011
-
Mathematica
fQ[n_] := !PrimeQ[n - 1] && !PrimeQ[n + 1]; Select[2 Range@ 163, fQ] Select[Range[2,400,2],AllTrue[#+{1,-1},CompositeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 01 2014 *) 2*SequencePosition[Table[If[CompositeQ[n],1,0],{n,1,351,2}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 04 2020 *)
-
PARI
{ n=0; forstep (a=2, 3986, 2, if (!isprime(a+1) && !isprime(a-1), write("b061673.txt", n++, " ", a)) ) } \\ Harry J. Smith, Jul 26 2009
-
Python
from sympy import isprime def abelow(limit): for k in range(2, limit, 2): if not isprime(k-1) and not isprime(k+1): yield k print([an for an in abelow(327)]) # Michael S. Branicky, Jan 02 2021
Comments