cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091112 Number of orbits of length n under the map whose periodic points are counted by A061686.

Original entry on oeis.org

1, 8, 513, 115272, 70162625, 95640604266, 256797561193432, 1238094271228829120, 9993778343964199218438, 127849400250667505250954500, 2480163309080566931933236667234, 70354340598798824605743590305386600, 2830805474672999382519296750329811657242
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old Name was: "A061686 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map".

Examples

			b(1)=1, b(3)=1540, so a(3)=(1/3)(b(3)-b(1))=513.
		

Crossrefs

Cf. A061686.

Programs

  • Maple
    a061686:= proc(n) option remember;
      add(binomial(n,k)^5*(n-k)*procname(k)/n, k=0..n-1)
    end proc:
    a061686(0):= 1:
    a:= n -> 1/n * add(numtheory:-mobius(d)*a061686(n/d), d = numtheory:-divisors(n)):
    seq(a(n), n=1..6); # Robert Israel, May 05 2015
  • Mathematica
    (* b = A061686 *) b[0]=1; b[n_] := b[n] = Sum[Binomial[n, k]^5*(n-k)*b[k]/ n, {k, 0, n-1}]; a[n_] := (1/n)*DivisorSum[n, MoebiusMu[#] * b[n/#] &]; Array[a, 20] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    A091112(n)=sumdiv(n,d,moebius(d)*A061686(n/d)) \\ M. F. Hasler, May 11 2015

Formula

If b(n) is the (n+1)-th term of A061686, then a(n) = (1/n)*Sum_{d|n} mu(d) b(n/d).

Extensions

More terms from Robert Israel, May 05 2015
Name clarified by M. F. Hasler, May 11 2015

A275043 Number A(n,k) of set partitions of [k*n] such that within each block the numbers of elements from all residue classes modulo k are equal for k>0, A(n,0)=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 5, 16, 15, 1, 1, 1, 9, 64, 131, 52, 1, 1, 1, 17, 298, 1613, 1496, 203, 1, 1, 1, 33, 1540, 25097, 69026, 22482, 877, 1, 1, 1, 65, 8506, 461105, 4383626, 4566992, 426833, 4140, 1, 1, 1, 129, 48844, 9483041, 350813126, 1394519922, 437665649, 9934563, 21147, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 14 2016

Keywords

Examples

			A(2,2) = 3: 1234, 12|34, 14|23.
A(2,3) = 5: 123456, 123|456, 126|345, 135|246, 156|234.
A(2,4) = 9: 12345678, 1234|5678, 1238|4567, 1247|3568, 1278|3456, 1346|2578, 1368|2457, 1467|2358, 1678|2345.
A(3,2) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34.
Square array A(n,k) begins:
  1,   1,     1,       1,          1,            1,               1, ...
  1,   1,     1,       1,          1,            1,               1, ...
  1,   2,     3,       5,          9,           17,              33, ...
  1,   5,    16,      64,        298,         1540,            8506, ...
  1,  15,   131,    1613,      25097,       461105,         9483041, ...
  1,  52,  1496,   69026,    4383626,    350813126,     33056715626, ...
  1, 203, 22482, 4566992, 1394519922, 573843627152, 293327384637282, ...
		

Crossrefs

Rows n=0+1,2-5 give: A000012, A094373, A275100, A275101, A275102.
Main diagonal gives A275044.
Cf. A345400.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k*n=0, 1, add(
           binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*A[j, k], {j, 0, n-1}]/n]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)

A342199 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^5 * a(k-1).

Original entry on oeis.org

1, 1, 33, 519, 43111, 5068111, 840782023, 291086377719, 139698959369111, 90748115988081551, 90809507057803456103, 124011515918275951611959, 217278911997171247450862041, 509237348184229328050319432621, 1567286639251140454692258569881053
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^5 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 14}]
Showing 1-3 of 3 results.