A092239 Number of orbits of length n under the map whose periodic points are counted by A061693.
0, 2, 9, 42, 225, 1260, 7497, 46176, 293382, 1908150, 12655269, 85287870, 582628683, 4026368514, 28104231825, 197884340160, 1404038987577, 10029929788566, 72086075552493, 520920674929650
Offset: 1
Keywords
Examples
a(3)=9 since a(3)=(1/3)(b(3)-b(1)) where b is the sequence A061693, which starts 0,4,27.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
- Thomas Ward, Exactly realizable sequences. [local copy].
Crossrefs
Cf. A061693.
Programs
-
Mathematica
Table[Sum[MoebiusMu[d] * (Sum[Binomial[n/d, k]^3, {k, 0, n/d}]/2 - 1), {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Sep 05 2019 *)
Formula
If b(n) is the n-th term of A061693, then a(n) = (1/n)*Sum_{d|n}mu(d)a(n/d).
a(n) ~ 8^n / (Pi*sqrt(3)*n^2). - Vaclav Kotesovec, Sep 05 2019
Extensions
Name clarified by Michel Marcus, May 14 2015
Comments