cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091266 Number of orbits of length n under the map whose periodic points are counted by A061694.

Original entry on oeis.org

0, 0, 12, 216, 3500, 58494, 1028167, 18954072, 363991752, 7231521650, 147777013109, 3091874792274, 65993049570175, 1432803420182428, 31570847522072400, 704668366087255200, 15907964778448807820
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061694 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.

Examples

			b(1)=0, b(3)=36 so a(3)=12.
		

Crossrefs

Cf. A061694.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d] * Sum[Sum[((n/d)!/(i!*j!*(n/d - i - j)!))^3/6, {i, 1, n/d - j - 1}], {j, 1, n/d}], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Sep 05 2019 *)

Formula

If b(n) is the n-th term of A061694, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
a(n) ~ 3^(3*n + 1) / (8 * Pi^2 * n^3). - Vaclav Kotesovec, Sep 05 2019

Extensions

Name clarified by Michel Marcus, May 14 2015

A061692 Triangle of generalized Stirling numbers.

Original entry on oeis.org

1, 1, 4, 1, 27, 36, 1, 172, 864, 576, 1, 1125, 17500, 36000, 14400, 1, 7591, 351000, 1746000, 1944000, 518400, 1, 52479, 7197169, 80262000, 191394000, 133358400, 25401600, 1, 369580, 151633440, 3691514176, 17188416000, 23866214400, 11379916800, 1625702400
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2001

Keywords

Examples

			1; 1,4; 1,27,36; 1,172,864,576; ...
		

Crossrefs

Diagonals give A001044, A061695, A061693, A061694. Cf. A061691.
Row sums give A061684.

Programs

  • Maple
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(x*b(n-i)/i!^3, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!^3):
    seq(T(n), n=1..10);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    R[0, ] = 1; R[n, x_] := R[n, x] = x*Sum[Binomial[n, k]^2*Binomial[n-1, k]*R[k, x], {k, 0, n-1}]; Table[CoefficientList[R[n, x], x] // Rest, {n, 1, 8}] // Flatten (* Jean-François Alcover, Sep 01 2015, after Peter Bala *)

Formula

T(n, k) = 1/k!*Sum multinomial(n, n_1, n_2, ..n_k)^3, where the sum extends over all compositions (n_1, n_2, .., n_k) of n into exactly k nonnegative parts. - Vladeta Jovovic, Apr 23 2003
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*( sum {k = 0..n-1} binomial(n,k)^2*binomial(n-1,k)*R(k,x) ) with R(0,x) = 1. Also R(n,x + y) = sum {k = 0..n} binomial(n,k)^3*R(k,x)*R(n-k,y). - Peter Bala, Sep 17 2013

Extensions

More terms from Vladeta Jovovic, Apr 23 2003
Showing 1-2 of 2 results.