cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061776 Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives number of triangles in n-th generation.

Original entry on oeis.org

1, 3, 6, 12, 18, 30, 42, 66, 90, 138, 186, 282, 378, 570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, 18426, 24570, 36858, 49146, 73722, 98298, 147450, 196602, 294906, 393210, 589818, 786426, 1179642, 1572858, 2359290, 3145722, 4718586, 6291450
Offset: 0

Views

Author

N. J. A. Sloane, R. K. Guy, Jun 23 2001

Keywords

Comments

Number of 3-colorings of the (n,2)-Turán graph. - Alois P. Heinz, Jun 07 2024

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.

Crossrefs

A061777 gives total population of triangles at n-th generation.
Cf. A266972.

Programs

  • Maple
    A061776 := proc(n) if n mod 2 = 0 then 6*(2^(n/2)-1); else 3*(2^((n-1)/2)-1)+3*(2^((n+1)/2)-1); fi; end; # for n >= 1
  • Mathematica
    a[0]=1; a[n_/;EvenQ[n]]:=6*(2^(n/2)-1); a[n_/;OddQ[n]] := 3*(2^((n-1)/2)-1) + 3*(2^((n+1)/2)-1); a /@ Range[0, 37] (* Jean-François Alcover, Apr 22 2011, after Maple program *)
    CoefficientList[Series[(1 + 2 x) (1 + x^2) / ((1 - x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
    LinearRecurrence[{1,2,-2},{1,3,6,12},40] (* Harvey P. Dale, Mar 27 2019 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -2,2,1]^n*[1;3;6])[1,1] \\ Charles R Greathouse IV, Feb 19 2017

Formula

Explicit formula given in Maple line.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3) for n>3. G.f.: (1+2*x)*(1+x^2)/((1-x)*(1-2*x^2)). - Colin Barker, May 08 2012
a(n) = 3*A027383(n-1) for n>0, a(0)=1. - Bruno Berselli, May 08 2012