cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061783 Luhn primes: primes p such that p + (p reversed) is also a prime.

Original entry on oeis.org

229, 239, 241, 257, 269, 271, 277, 281, 439, 443, 463, 467, 479, 499, 613, 641, 653, 661, 673, 677, 683, 691, 811, 823, 839, 863, 881, 20011, 20029, 20047, 20051, 20101, 20161, 20201, 20249, 20269, 20347, 20389, 20399, 20441, 20477, 20479, 20507
Offset: 1

Views

Author

Amarnath Murthy, May 24 2001

Keywords

Comments

a(n) has an odd number of digits, as otherwise a(n) + reverse(a(n)) is a multiple of 11. For a(n) > 10, a(n) is prime and thus odd, and therefore the first digit of a(n) is even as otherwise a(n) + reverse(a(n)) is even and composite. - Chai Wah Wu, Aug 19 2015
See A072385 for the resulting primes p + reverse(p) = A056964(p). - M. F. Hasler, Sep 26 2019
Named by Cira and Smarandache (2014) after Norman Luhn, who noted the property of the prime 229 on the Prime Curios! website. - Amiram Eldar, Jun 05 2021

Examples

			229 is a term since 229 is a prime and so is 229 + 922 = 1151.
		

Crossrefs

Cf. A004086 (reverse), A004087 (primes reversed), A056964 (reverse & add), A072385, A086002 (similar, using "rotate" instead of "reverse").

Programs

  • Magma
    [NthPrime(n): n in [1..2400] | IsPrime(s) where s is NthPrime(n)+Seqint(Reverse(Intseq(NthPrime(n))))]; // Bruno Berselli, Aug 05 2013
    
  • Mathematica
    Select[Prime[Range[3000]],PrimeQ[#+FromDigits[Reverse[IntegerDigits[#]]]]&] (* Harvey P. Dale, Nov 27 2010 *)
  • PARI
    isok(p) = { isprime(p) && isprime(p + fromdigits(Vecrev(digits(p)))) } \\ Harry J. Smith, Jul 28 2009
    
  • PARI
    select( is_A061783(p)=isprime(A056964(p)) && isprime(p), primes(8713)) \\  A056964(p)=p+fromdigits(Vecrev(digits(p))). There is no term with 4 digits or starting with an odd digit, i.e., no candidate between prime(168) = 997 and prime(2263) = 20011. Using primes up to prime(8713) = 89989 ensures the list of 5-digit terms is complete. - M. F. Hasler, Sep 26 2019
    
  • Python
    from sympy import isprime, prime
    A061783 = [prime(n) for n in range(1,10**5) if isprime(prime(n)+int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014

Extensions

Corrected and extended by Patrick De Geest, May 26 2001
Cross-references added by M. F. Hasler, Sep 26 2019