cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A014263 Numbers that contain even digits only.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no odd digits in their decimal expansion has Hausdorff dimension log 5 / log 10.
Integers written in base 5 and then doubled (in base 10). - Franklin T. Adams-Watters, Mar 15 2006
The carryless mod 10 "even" numbers (cf. A004529) sorted and duplicates removed. - N. J. A. Sloane, Aug 03 2010.
Complement of A007957; A196564(a(n)) = 0; A103181(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,2,4,6,8 for k=0..4. - Hieronymus Fischer, Jun 03 2012

Examples

			a(1000) = 24888.
a(10^4) = 60888.
a(10^5) = 22288888.
a(10^6) = 446888888.
		

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.

Crossrefs

Programs

  • Haskell
    a014263 n = a014263_list !! (n-1)
    a014263_list = filter (all (`elem` "02468") . show) [0,2..]
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Magma
    [n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]];  // Bruno Berselli, Jul 19 2011
    
  • Maple
    a:= proc(m) local L,i;
      L:= convert(m-1,base,5);
      2*add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    seq(a(i),i=1..100); # Robert Israel, Apr 07 2016
  • Mathematica
    Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *)
    FromDigits/@Tuples[{0,2,4,6,8},3] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
    
  • PARI
    is(n)=#setminus(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Mar 03 2025
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:]))
    print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
    
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for first in "2468":
                for rest in product("02468", repeat=d-1):
                    yield int(first + "".join(rest))
    print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
    

Formula

A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
a(n) = 2*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022

Extensions

Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012

A350536 a(n) is the smallest proper multiple of 2n+1 which contains only odd digits, or -1 if no such multiple exists.

Original entry on oeis.org

3, 9, 15, 35, 99, 33, 39, 75, 51, 57, 315, 115, 75, 135, 319, 93, 99, 175, 111, 117, 533, 559, 135, 517, 539, 153, 159, 715, 171, 177, 793, 315, 195, 335, 759, 355, 511, 375, 539, 395, 1377, 913, 595, 957, 979, 1911, 1395, 1995, 3395, 9999, 1111, 515, 315, 535, 1199, 333
Offset: 0

Views

Author

Bernard Schott, Jan 04 2022

Keywords

Comments

Generalization of the problem 1/2 of International Mathematical Talent Search, round 2 (see link and 2nd example).
If the escape clause is used, it will be necessarily for terms coming from n = 12 + 25*k, k >= 0.

Examples

			a(10) = 315 = 21 * 15 is the smallest multiple of 21 which contains only odd digits.
a(4998) = 33339995 = 9997 * 3335 is the smallest multiple of 9997 which contains only odd digits, so this is the answer to the IMTS problem.
		

Crossrefs

Terms belong to A014261.

Programs

  • Mathematica
    a[n_] := Module[{m = 2*n + 1, k}, k = 3*m; While[!AllTrue[IntegerDigits[k], OddQ], k += 2*m]; k]; Array[a, 50, 0] (* Amiram Eldar, Jan 04 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k; \\ Michel Marcus, Jan 04 2022
    
  • Python
    from itertools import product, count
    def A350536(n):
        m = 2*n+1
        for l in count(len(str(m))):
            for s in product('13579',repeat=l):
                k = int(''.join(s))
                if k > m and k % m == 0:
                    return k # Chai Wah Wu, Jan 11 2022

Extensions

More terms from Michel Marcus, Jan 04 2022

A061811 Multiples of 3 with all even digits.

Original entry on oeis.org

0, 6, 24, 42, 48, 60, 66, 84, 204, 222, 228, 240, 246, 264, 282, 288, 402, 408, 420, 426, 444, 462, 468, 480, 486, 600, 606, 624, 642, 648, 660, 666, 684, 804, 822, 828, 840, 846, 864, 882, 888, 2004, 2022, 2028, 2040, 2046, 2064, 2082, 2088, 2202, 2208
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

The numbers b(d) of terms from 10^(d-1) to 10^d satisfy the recurrence b(d) = 6 b(d-1) - 6 b(d-2) + 5 b(d-3) with b(1)=1, b(2)=6, b(3)=33. For d >= 4, b(d) = (3*A276508(d) - 10*A276508(d-1) + 3*A276508(d-2))/7. - Robert Israel, Feb 15 2017

Examples

			228 has all even digits and 228 = 3*76.
		

Crossrefs

Programs

  • Maple
    N:= 4: # for all terms < 10^N
    E[1,0]:= {6}:
    E[1,1]:= {4}:
    E[1,2]:= {2,8}:
    for n from 2 to N do
      for j from 0 to 2 do
        E[n,j]:= map(t -> (10*t, 10*t+6),E[n-1,j]) union
                 map(t -> (10*t+2, 10*t+8), E[n-1,j+1 mod 3]) union
               map(t -> 10*t+4, E[n-1,j+2 mod 3]);
    od od:
    A:=sort([0,seq(op(E[i,0]),i=1..N)]); # Robert Israel, Feb 15 2017
  • Mathematica
    Select[3*Range[0,800],AllTrue[IntegerDigits[#],EvenQ]&] (* Harvey P. Dale, May 03 2025 *)
  • PARI
    is(n)=n%3==0 && #setintersect(Set(digits(n)), [1,3,5,7,9])==0 \\ Charles R Greathouse IV, Feb 15 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Offset corrected by Charles R Greathouse IV, Feb 15 2017

A228096 Numbers consisting of only odd digits such that no permutation of its digits yields a prime.

Original entry on oeis.org

1, 9, 15, 33, 39, 51, 55, 57, 75, 77, 93, 99, 111, 117, 135, 153, 155, 159, 171, 177, 195, 315, 333, 339, 351, 355, 357, 375, 393, 399, 513, 515, 519, 531, 535, 537, 551, 553, 555, 559, 573, 579, 591, 595, 597, 711, 717, 735, 753, 759, 771, 777, 795
Offset: 1

Views

Author

Jayanta Basu, Aug 10 2013

Keywords

Comments

Apart from the first term, A061810 is a subsequence. Conjecture: a(n) ~ A061810(n). - Charles R Greathouse IV, Feb 15 2017

Examples

			51 is a member since it consists of only odd digits and both 15 and 51 are composites.
		

Crossrefs

Subsequence of A067013.

Programs

  • Mathematica
    Select[Range[800], And @@ OddQ[x = IntegerDigits[#]] && Count[FromDigits /@ Permutations[x], _?PrimeQ] == 0 &]
    Table[FromDigits/@Select[Tuples[Range[1,9,2],n],NoneTrue[FromDigits/@ Permutations[#],PrimeQ]&],{n,3}]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 09 2019 *)

A061817 Multiples of 9 containing only odd digits.

Original entry on oeis.org

9, 99, 117, 135, 153, 171, 315, 333, 351, 513, 531, 711, 999, 1179, 1197, 1359, 1377, 1395, 1539, 1557, 1575, 1593, 1719, 1737, 1755, 1773, 1791, 1917, 1935, 1953, 1971, 3159, 3177, 3195, 3339, 3357, 3375, 3393, 3519, 3537, 3555, 3573, 3591, 3717, 3735
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			117 = 9*13 is a term.
		

Crossrefs

Subsequence of A014261.

Programs

  • Mathematica
    Select[9Range[500],And@@OddQ[IntegerDigits[#]]&] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    is(n)=n%9==0 && #setintersect(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001
Showing 1-5 of 5 results.