A320878 Primes such that iteration of A062028 (n + its digit sum) yields 6 primes in a row.
286330897, 286330943, 388098901, 955201943, 1776186851, 1854778853, 2559495863, 2647782901, 3517793911, 3628857863, 3866728909, 3974453911, 4167637819, 4269837799, 5083007887, 5362197829, 5642510933, 6034811933, 8180784851, 8214319903
Offset: 1
Links
- Lars Blomberg, Table of n, a(n) for n = 1..7626 (Terms < 10^14. The first 200 from M. F. Hasler)
- Carlos Rivera, Puzzle 163. P+SOD(P)
Crossrefs
Cf. A230093 (number of m s.th. m + (sum of digits of m) = n) and references there.
Programs
-
PARI
is_A320878(n,p=n)={for(i=1,6, isprime(p=A062028(p))||return);isprime(n)} forprime(p=286e6,,is_A320878(p)&& print1(p",")) /* much faster, using the precomputed array A048527, as follows: */ PP(n)=select(p->p+sumdigits(p)==n,primes([n-9*#digits(n),n-2])) \\ Returns list of prime predecessors for A062028. (PP(n) nonempty <=> n in A320881.) A320878=[]; my(S=A048527); while(#S=Set(concat(apply(PP,S))), A320878=setunion(A320878,S)) \\ Yields 211 terms from A048527[1..3000]
Comments