A062049 Integer part of geometric mean of first n primes.
2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 80, 82, 83, 85, 87, 88, 90, 92, 94, 95, 97, 99, 101, 103
Offset: 1
Keywords
Examples
a(5) = floor( (2*3*5*7*11)^(1/5) ) = 4.
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
- Christian Axler, On the arithmetic and geometric means of the prime numbers, arXiv:1609.07934 [math.NT], 2016.
- A. Kourbatov, On the geometric mean of the first n primes, arXiv:1603.00855 [math.NT], 2016.
- C. Rivera, ed. Conjecture 67. Primes and e, 2010.
- J. Sandor and A. Verroken, On a limit involving the product of prime numbers, Notes Number Theory Discrete Math. 17 (2011), No. 2, 1-3.
Programs
-
Maple
P:= 1: A[0]:= 1: for n from 1 to 100 do P:= ithprime(n)*P; for k from A[n-1] while (k+1)^n <= P do od: A[n]:= k; od: seq(A[i],i=1..100); # Robert Israel, Feb 22 2016
-
Mathematica
With[{pl=Prime[Range[80]]},Table[IntegerPart[GeometricMean[Take[pl,n]]],{n,80}]] (* Harvey P. Dale, Mar 31 2012 *)
-
PARI
{ default(realprecision, 100); p=1; for (n=1, 1000, p*=prime(n); write("b062049.txt", n, " ", p^(1/n)\1) ) } \\ Harry J. Smith, Jul 30 2009
Formula
From Alexei Kourbatov, Feb 22 2016: (Start)
a(n) ~ prime(n)/exp(1 + 1/log(prime(n)) + O(1/log^2(prime(n)))).
a(n) ~ prime(n)/e (this approximation is poor).
a(n) ~ prime(n)/exp(1 + 1/log(prime(n))).
a(n) ~ prime(n)/exp(1 + 1/log(prime(n)) + 3/log^2(prime(n))).
a(n) ~ prime(n)/exp(1 + 1/log(prime(n)) + 3/log^2(prime(n)) + 13/log^3(prime(n))).
a(n) < (1/2)*prime(n) for n>3.
(End)
a(n) = floor(A002110(n)^(1/n)). - Michel Marcus, Feb 22 2016
Extensions
More terms from Larry Reeves (larryr(AT)acm.org) and Matthew Conroy, Jun 11 2001
Comments