A062054 Numbers with 4 odd integers in their Collatz (or 3x+1) trajectory.
17, 34, 35, 68, 69, 70, 75, 136, 138, 140, 141, 150, 151, 272, 276, 277, 280, 282, 300, 301, 302, 544, 552, 554, 560, 564, 565, 600, 602, 604, 605, 1088, 1104, 1108, 1109, 1120, 1128, 1130, 1137, 1200, 1204, 1205, 1208, 1210, 2176, 2208, 2216, 2218, 2240
Offset: 1
Examples
The Collatz trajectory of 17 is (17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 4 odd integers. - _Jeffrey R. Goodwin_, Oct 26 2011
References
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
Links
- David A. Corneth, Table of n, a(n) for n = 1..15549 (first 750 terms from Reinhard Zumkeller, terms < 10^15)
- J. R. Goodwin, Results on the Collatz Conjecture, Sci. Ann. Comput. Sci. 13 (2003) pp. 1-16.
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for 2-automatic sequences.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a062054 n = a062054_list !! (n-1) a062054_list = map (+ 1) $ elemIndices 4 a078719_list -- Reinhard Zumkeller, Oct 08 2011
-
Mathematica
col4Q[n_]:=Module[{c=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&]}, Count[c,?OddQ]==4]; Select[Range[2500],col4Q] (* _Harvey P. Dale, Mar 21 2011 *)
Formula
The twelve formulas giving this sequence are listed in Corollary 3.3 in J. R. Goodwin with the following caveats: the value x cannot equal zero in formulas (3.16) and (3.20), one must multiply the formulas by all powers of 2 (2^1, 2^2, ...) to get the evens. - Jeffrey R. Goodwin, Oct 26 2011
Comments