A062071 a(n) = [n/1] + [n/(2^2)] + [n/(3^3)] + [n/(4^4)] + ... + [n/(k^k)] + ..., up to infinity, where [ ] is the floor function.
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90
Offset: 1
Examples
a(7) = [7/1] + [7/4] + [7/27] + ... = 7 + 1 + 0 + 0 + ... = 8. a(8) = [8/1] + [8/4] + [8/27] + [8/256] + ... = 8 + 2 + 0 + 0 + ... = 10.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
- Vaclav Kotesovec, Plot of a(n)/n for n = 1..100000
Programs
-
Mathematica
Flatten[{1, Table[Sum[Floor[n/k^k], {k, 1, Floor[N[Log[n]/LambertW[Log[n]]]] + 1}], {n, 2, 100}]}] (* Vaclav Kotesovec, Aug 30 2021 *)
-
PARI
\p 10 v=[]; for(n=1,120,v=concat(v,suminf(k=1,floor(n/k^k)))); v
-
PARI
for (n=1, 1000, write("b062071.txt", n, " ", suminf(k=1, n\k^k)\1) ) \\ Harry J. Smith, Jul 31 2009
-
PARI
a(n)=sum(k=1,exp(lambertw(log(n)))+1,n\k^k) \\ Charles R Greathouse IV, May 28 2015
-
SageMath
[sum( floor(n/j^j) for j in (1..1+log(n)) ) for n in (1..100)] # G. C. Greubel, May 06 2022
Formula
a(n) = Sum_{i=1..n} floor(n/i^i). - Wesley Ivan Hurt, Sep 15 2017
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^k)/(1 - x^(k^k)). - Seiichi Manyama, Aug 30 2021
Conjecture: a(n) ~ c * n, where c = A073009. - Vaclav Kotesovec, Aug 30 2021
Extensions
More terms from Jason Earls, Jun 21 2001