A062072 Continued fraction expansion of Fibonacci factorial constant.
1, 4, 2, 2, 3, 2, 15, 9, 1, 2, 1, 2, 15, 7, 6, 21, 3, 5, 1, 23, 1, 11, 1, 7, 1, 3, 1, 12, 2, 1, 1, 1, 7, 1, 3, 1, 12, 2, 1, 2, 2, 9, 27, 1, 1, 1, 1, 2, 19, 3, 8, 1, 1, 15, 3, 1, 2, 1, 1, 1, 3, 2, 3, 8, 1, 1, 14, 1, 49, 2, 1, 17, 4, 2, 1, 2, 2, 1, 3, 1, 5, 1, 1, 3, 1, 2, 1, 4, 1, 2, 5, 1, 3, 2, 1, 1, 2, 6
Offset: 0
Examples
1.2267420107203532444176302...
References
- R. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..4999
- Simon Plouffe, Plouffe's Inverter
Crossrefs
Cf. A062073 (decimal expansion).
Programs
-
PARI
\p 500 a=-1/(1/2+sqrt(5)/2)^2; contfrac(prod(n=1,17000,(1-a^n)))
-
PARI
{ allocatemem(932245000); default(realprecision, 5300); p=-1/(1/2 + sqrt(5)/2)^2; x=contfrac(prodinf(k=1, 1-p^k)); for (n=1, 5000, write("b062072.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Jul 31 2009
Formula
C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
Extensions
Offset changed by Andrew Howroyd, Aug 04 2024