cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062072 Continued fraction expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 4, 2, 2, 3, 2, 15, 9, 1, 2, 1, 2, 15, 7, 6, 21, 3, 5, 1, 23, 1, 11, 1, 7, 1, 3, 1, 12, 2, 1, 1, 1, 7, 1, 3, 1, 12, 2, 1, 2, 2, 9, 27, 1, 1, 1, 1, 2, 19, 3, 8, 1, 1, 15, 3, 1, 2, 1, 1, 1, 3, 2, 3, 8, 1, 1, 14, 1, 49, 2, 1, 17, 4, 2, 1, 2, 2, 1, 3, 1, 5, 1, 1, 3, 1, 2, 1, 4, 1, 2, 5, 1, 3, 2, 1, 1, 2, 6
Offset: 0

Views

Author

Jason Earls, Jun 27 2001

Keywords

Examples

			1.2267420107203532444176302...
		

References

  • R. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Cf. A062073 (decimal expansion).

Programs

  • PARI
    \p 500 a=-1/(1/2+sqrt(5)/2)^2; contfrac(prod(n=1,17000,(1-a^n)))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 5300); p=-1/(1/2 + sqrt(5)/2)^2; x=contfrac(prodinf(k=1, 1-p^k)); for (n=1, 5000, write("b062072.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024