A062099 Triangular numbers whose sum of digits is a triangular number.
0, 1, 3, 6, 10, 15, 21, 28, 55, 78, 91, 105, 120, 136, 190, 210, 231, 253, 276, 300, 325, 406, 465, 528, 703, 780, 820, 861, 1081, 1176, 1225, 1275, 1540, 1596, 1653, 1711, 1770, 2080, 2211, 2346, 2701, 2775, 2850, 3003, 3160, 3403, 3486, 3570, 3741, 3828
Offset: 1
Examples
a(8) = 28 is a triangular number and the sum of digits 10 is also a triangular number.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[ t: n in [0..90] | IsSquare(8*s+1) where s is &+Intseq(t) where t is n*(n+1) div 2 ]; // Bruno Berselli, May 27 2011
-
Mathematica
With[{trnos=Accumulate[Range[0,200]]},Select[trnos,MemberQ[trnos, Total[ IntegerDigits[ #]]]&]] (* Harvey P. Dale, Feb 26 2013 *)
-
PARI
{ for(m=0, 100, my(k=binomial(m+1,2)); if(ispolygonal(sumdigits(k),3), print1(k, ", "))) } \\ Harry J. Smith, Aug 01 2009
Extensions
More terms from Erich Friedman, Jun 20 2001