A062115 Numbers with no prime substring in their decimal expansion.
0, 1, 4, 6, 8, 9, 10, 14, 16, 18, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 81, 84, 86, 88, 90, 91, 94, 96, 98, 99, 100, 104, 106, 108, 140, 144, 146, 148, 160, 164, 166, 168, 169, 180, 184, 186, 188, 400, 404, 406, 408, 440, 444, 446, 448, 460, 464, 466
Offset: 1
Examples
25 is not included because 5 is prime.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jeffrey Shallit, Minimal primes, Journal of Recreational Mathematics 30:2 (1999-2000), pp. 113-117.
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a062115 n = a062115_list !! (n-1) a062115_list = filter ((== 0) . a039997) a084984_list -- Reinhard Zumkeller, Jan 31 2012
-
Python
from sympy import isprime def ok(n): s = str(n) ss = (int(s[i:j]) for i in range(len(s)) for j in range(i+1, len(s)+1)) return not any(isprime(k) for k in ss) print([k for k in range(500) if ok(k)]) # Michael S. Branicky, May 02 2023
-
Python
# faster for initial segment of sequence; uses ok, import above from itertools import chain, count, islice, product def agen(): # generator of terms yield from chain((0,), (int(t) for t in (f+"".join(r) for d in count(1) for f in "14689" for r in product("014689", repeat=d-1)) if ok(t))) print(list(islice(agen(), 100))) # Michael S. Branicky, May 02 2023
Formula
A039997(a(n)) = 0. - Reinhard Zumkeller, Jul 16 2007
From Charles R Greathouse IV, Mar 23 2010: (Start)
a(n) = O(n^(log_4 10)) = O(n^1.661) because numbers containing only 0,4,6,8 are in this sequence.
a(n) = Omega(n^(log_13637 1000000)) = Omega(n^1.451) for similar reasons; this bound can be increased by considering longer sequences of digits. (End)
Extensions
Offset corrected by Arkadiusz Wesolowski, Jul 27 2011
Comments