A062173 a(n) = 2^(n-1) mod n.
0, 0, 1, 0, 1, 2, 1, 0, 4, 2, 1, 8, 1, 2, 4, 0, 1, 14, 1, 8, 4, 2, 1, 8, 16, 2, 13, 8, 1, 2, 1, 0, 4, 2, 9, 32, 1, 2, 4, 8, 1, 32, 1, 8, 31, 2, 1, 32, 15, 12, 4, 8, 1, 14, 49, 16, 4, 2, 1, 8, 1, 2, 4, 0, 16, 32, 1, 8, 4, 22, 1, 32, 1, 2, 34, 8, 9, 32, 1, 48, 40, 2, 1, 32, 16, 2, 4, 40, 1, 32, 64, 8, 4, 2, 54, 32, 1, 58, 58, 88, 1, 32, 1, 24, 46
Offset: 1
Keywords
Examples
a(5) = 2^(5-1) mod 5 = 16 mod 5 = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..101101 (first 1000 terms from Harry J. Smith)
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Haskell
import Math.NumberTheory.Moduli (powerMod) a062173 n = powerMod 2 (n - 1) n -- Reinhard Zumkeller, Oct 17 2015
-
Magma
[Modexp(2,n-1,n): n in [1..110]]; // G. C. Greubel, Jan 11 2023
-
Mathematica
Array[Mod[2^(# - 1), #] &, 105] (* Michael De Vlieger, Jul 01 2018 *) Array[PowerMod[2,#-1,#]&,120] (* Harvey P. Dale, May 17 2023 *)
-
PARI
A062173(n) = if(1==n, 0, lift(Mod(2, n)^(n-1))); \\ Antti Karttunen, Jul 01 2018
-
SageMath
[power_mod(2,n-1,n) for n in range(1,110)] # G. C. Greubel, Jan 11 2023
Formula
a(n) = A106262(2*n-3, n-2). - G. C. Greubel, Jan 11 2023
Extensions
More terms from Antti Karttunen, Jul 01 2018
Comments