cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062195 Sixth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 48, 1512, 40320, 997920, 23950080, 570810240, 13699445760, 333923990400, 8310997094400, 211930425907200, 5548723878297600, 149353151057510400, 4135933413900288000, 117874102296158208000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+5)*Binomial(n+7, 7)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+5)!*Binomial[n+7, 7]/5!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    { f=24; for (n=0, 100, f*=n + 5; write("b062195.txt", n, " ", f*binomial(n + 7, 7)/120) ) } \\ Harry J. Smith, Aug 02 2009
    

Formula

E.g.f.: N(2;5, x)/(1-x)^13 with N(2;5, x) := Sum_{k=0..5} A062196(5, k)*x^k = 1+35*x+210*x^2+350*x^3+175*x^4+21*x^5.
a(n) = A062139(n+5, 5).
a(n) = (n+5)!*binomial(n+7, 7)/5!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5,-8), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 1295*(Ei(1) - gamma) + 2170*e - 22813/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 36575*(gamma - Ei(-1)) - 21700/e - 63455/3, where Ei(-1) = -A099285. (End)

A292999 Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.

Original entry on oeis.org

1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1

Views

Author

Jeremy Dover, Sep 27 2017

Keywords

Examples

			For n=1: AAAA -> T(1,4)=1.
For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10.
Triangle starts:
    1;
    8,   10;
   21,  120,     90;
   40,  420,   1440,     840;
   65, 1000,   6300,   16800,     8400;
   96, 1950,  18000,   88200,   201600,    90720;
  133, 3360,  40950,  294000,  1234800,  2540160,   1058400;
  176, 5320,  80640,  764400,  4704000, 17781120,  33868800, 13305600;
  225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
		

Crossrefs

Columns of the table: T(n,4) = A000567(n), T(n,5) = 10*A007586(n-1), T(n,6) = 90*A220212(n-2).
Diagonals of the table: T(n,n+3) = A061206(n), T(n+1,n+3) = 8*A005461(n), T(n-1,n) = 21*A001755(n), T(n,n) = 40*A001811(n), T(n,n-1) = 65*A001777(n), T(n+6,n+4) = A062194(n).

Programs

  • Mathematica
    Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)

Formula

a(n) = binomial(k,4)*n!*(1/(n+3-k)! + 3/(n+2-k)!) (with the convention that 3/(-1)! = 0 when k=n+3).
Showing 1-2 of 2 results.