A062238 Composite numbers which contain their largest proper divisor as a substring.
15, 25, 125, 1537, 3977, 11371, 38117, 110317, 117197, 123679, 143323, 146137, 179297, 197513, 316619, 390913, 397139, 399797, 485357, 779917, 797191, 990919, 1110691, 1178951, 1483117, 1723717, 1813733, 2165299, 2273099, 2369777, 2947969, 3035171, 3099013, 3183113
Offset: 1
Examples
3{97}7 = 97*41.
Links
- Michel Marcus, Table of n, a(n) for n = 1..272
Programs
-
Mathematica
Do[ If[ !PrimeQ[ n ] && StringPosition[ ToString[ n ], ToString[ Divisors[ n ] [ [ -2 ] ] ] ] != {}, Print[ n ] ], {n, 2, 10^7} ] Select[Range[319*10^4],CompositeQ[#]&&SequenceCount[IntegerDigits[ #],IntegerDigits[ Divisors[#][[-2]]]]>0&] (* Harvey P. Dale, Dec 26 2022 *)
-
PARI
gpd(n) = if(n==1, 1, n/factor(n)[1, 1]); \\ A032742 issub(vv, v) = {for (i=1, #v - #vv + 1, if (vector(#vv, k, v[k+i-1]) == vv, return(1)););} isok(n) = if ((n>1) && !isprime(n), issub(digits(gpd(n)), digits(n))); \\ Michel Marcus, Dec 31 2020
Extensions
More terms from Robert G. Wilson v, Aug 08 2001
More terms from Michel Marcus, Dec 31 2020
Clarified definition at the suggestion of Harvey P. Dale. - N. J. A. Sloane, Dec 26 2022