cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062238 Composite numbers which contain their largest proper divisor as a substring.

Original entry on oeis.org

15, 25, 125, 1537, 3977, 11371, 38117, 110317, 117197, 123679, 143323, 146137, 179297, 197513, 316619, 390913, 397139, 399797, 485357, 779917, 797191, 990919, 1110691, 1178951, 1483117, 1723717, 1813733, 2165299, 2273099, 2369777, 2947969, 3035171, 3099013, 3183113
Offset: 1

Views

Author

Erich Friedman, Jun 30 2001

Keywords

Examples

			3{97}7 = 97*41.
		

Crossrefs

Cf. A002808 (composite numbers), A032742.

Programs

  • Mathematica
    Do[ If[ !PrimeQ[ n ] && StringPosition[ ToString[ n ], ToString[ Divisors[ n ] [ [ -2 ] ] ] ] != {}, Print[ n ] ], {n, 2, 10^7} ]
    Select[Range[319*10^4],CompositeQ[#]&&SequenceCount[IntegerDigits[ #],IntegerDigits[ Divisors[#][[-2]]]]>0&] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    gpd(n) = if(n==1, 1, n/factor(n)[1, 1]); \\ A032742
    issub(vv, v) = {for (i=1, #v - #vv + 1, if (vector(#vv, k, v[k+i-1]) == vv, return(1)););}
    isok(n) = if ((n>1) && !isprime(n), issub(digits(gpd(n)), digits(n))); \\ Michel Marcus, Dec 31 2020

Extensions

More terms from Robert G. Wilson v, Aug 08 2001
More terms from Michel Marcus, Dec 31 2020
Clarified definition at the suggestion of Harvey P. Dale. - N. J. A. Sloane, Dec 26 2022