cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062317 Numbers k such that 5*k-1 is a perfect square.

Original entry on oeis.org

1, 2, 10, 13, 29, 34, 58, 65, 97, 106, 146, 157, 205, 218, 274, 289, 353, 370, 442, 461, 541, 562, 650, 673, 769, 794, 898, 925, 1037, 1066, 1186, 1217, 1345, 1378, 1514, 1549, 1693, 1730, 1882, 1921, 2081, 2122, 2290, 2333, 2509, 2554, 2738, 2785, 2977
Offset: 1

Views

Author

Santi Spadaro, Jul 12 2001

Keywords

Crossrefs

Cf. A036666.

Programs

  • Mathematica
    f[n_]:=IntegerQ[Sqrt[5*n-1]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,10,13,29},50] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    je=[]; for(n=1,5000, if(issquare(5*n-1),je=concat(je,n))); je
    
  • PARI
    { n=0; for (m=1, 10^9, if (issquare(5*m - 1), write("b062317.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009

Formula

a(n) = ((2+5*(n-1)/2)^2 + 1)/5 if n is odd; a(n) = ((3+5*(n-2)/2)^2 + 1)/5 if n is even.
From R. J. Mathar, Jan 30 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x+6*x^2+x^3+x^4)/((1+x)^2*(1-x)^3). (End)
a(n) = (10*n*(n-1) + 5 - (6*n-3)*(-1)^n)/8. - Eric Simon Jacob, Jan 20 2020

Extensions

More terms from Jason Earls, Jul 14 2001