A062317 Numbers k such that 5*k-1 is a perfect square.
1, 2, 10, 13, 29, 34, 58, 65, 97, 106, 146, 157, 205, 218, 274, 289, 353, 370, 442, 461, 541, 562, 650, 673, 769, 794, 898, 925, 1037, 1066, 1186, 1217, 1345, 1378, 1514, 1549, 1693, 1730, 1882, 1921, 2081, 2122, 2290, 2333, 2509, 2554, 2738, 2785, 2977
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A036666.
Programs
-
Mathematica
f[n_]:=IntegerQ[Sqrt[5*n-1]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{1,2,-2,-1,1},{1,2,10,13,29},50] (* Harvey P. Dale, Dec 29 2018 *)
-
PARI
je=[]; for(n=1,5000, if(issquare(5*n-1),je=concat(je,n))); je
-
PARI
{ n=0; for (m=1, 10^9, if (issquare(5*m - 1), write("b062317.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009
Formula
a(n) = ((2+5*(n-1)/2)^2 + 1)/5 if n is odd; a(n) = ((3+5*(n-2)/2)^2 + 1)/5 if n is even.
From R. J. Mathar, Jan 30 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x+6*x^2+x^3+x^4)/((1+x)^2*(1-x)^3). (End)
a(n) = (10*n*(n-1) + 5 - (6*n-3)*(-1)^n)/8. - Eric Simon Jacob, Jan 20 2020
Extensions
More terms from Jason Earls, Jul 14 2001