cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062351 Palindromic primes with strictly increasing digits up to the middle and then strictly decreasing.

Original entry on oeis.org

2, 3, 5, 7, 11, 131, 151, 181, 191, 353, 373, 383, 787, 797, 12421, 12721, 12821, 13831, 13931, 14741, 17971, 34543, 34843, 35753, 1235321, 1245421, 1257521, 1268621, 1278721, 1456541, 1469641, 1489841, 1579751, 1589851, 3479743
Offset: 1

Views

Author

Amarnath Murthy, Jun 23 2001

Keywords

Comments

The last term of the finite series is a(63) = 123467898764321.

Examples

			13831 belongs to the sequence as it is a palindromic prime in which the digits are increasing up to the middle digit 8 and then decreasing.
		

Crossrefs

Cf. A343524 (strictly increasing palindromes), A062352, A084836.

Programs

  • Python
    from sympy import isprime
    from itertools import combinations
    def agen():
      for digits in range(1, 19):
        for left in combinations("123456789", (digits+1)//2):
          left = "".join(left)
          yield int(left + (left[:digits//2])[::-1])
    print(list(filter(isprime, agen()))) # Michael S. Branicky, Apr 25 2021

Extensions

Corrected and edited by Patrick De Geest, Jun 07 2003

A084836 Palindromic primes with nondecreasing digits up to the middle and then nonincreasing.

Original entry on oeis.org

2, 3, 5, 7, 11, 131, 151, 181, 191, 353, 373, 383, 787, 797, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14741, 15551, 16661, 17971, 19991, 33533, 34543, 34843, 35753, 77977, 78887, 79997, 1114111, 1117111, 1123211, 1126211, 1129211, 1134311
Offset: 1

Views

Author

Patrick De Geest, Jun 07 2003

Keywords

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def agen():
        yield from (2, 3, 5, 7, 11)
        for d in count(2):
            ndni = (int("".join(m+m[:-1][::-1])) for m in mc("123456789", d))
            yield from filter(isprime, ndni)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jun 26 2022

Extensions

a(39) and beyond from Michael S. Branicky, Jun 26 2022

A084837 Palindromic primes with nonincreasing digits up to the middle and then nondecreasing.

Original entry on oeis.org

2, 3, 5, 7, 11, 101, 313, 727, 757, 919, 929, 31013, 72227, 73037, 73237, 74047, 75557, 76367, 76667, 77377, 77477, 91019, 93139, 93239, 94049, 94349, 96269, 96469, 97379, 97579, 98389, 98689, 3211123, 3222223, 3310133, 3321233, 3331333, 7100017, 7300037, 7310137
Offset: 1

Views

Author

Patrick De Geest, Jun 07 2003

Keywords

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def agen(): # generator of terms
        yield from (2, 3, 5, 7, 11)
        for d in count(2):
            nind = (int("".join(m+m[:-1][::-1])) for m in mc("9876543210", d))
            yield from sorted(filter(isprime, nind))
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jun 26 2022

Extensions

a(38) and beyond from Michael S. Branicky, Jun 26 2022

A367735 Prime numbers wherein digit values increase, decrease, and finally increase.

Original entry on oeis.org

1201, 1213, 1217, 1301, 1303, 1307, 1319, 1327, 1409, 1423, 1427, 1429, 1439, 1523, 1549, 1601, 1607, 1609, 1613, 1619, 1627, 1637, 1657, 1709, 1723, 1747, 1759, 1801, 1823, 1847, 1867, 1879, 1901, 1907, 1913, 1949, 1979, 2309, 2417, 2423, 2437, 2503, 2539
Offset: 1

Views

Author

James S. DeArmon, Jan 24 2024

Keywords

Comments

Terms must have at least 4 digits.
There are 3287310 terms, with the last being 1245678987653210123456789. - Michael S. Branicky, Jan 26 2024

Examples

			The first term is 1201: increases 1-2, decreases 2-0, then increases 0-1.  An example 7-digit term is 1215679.
		

Crossrefs

Programs

  • Maple
    q:= proc(n) local i, l, s;
          l, s:= convert(n, base, 10), 1;
          for i to nops(l)-1 while s<5 do s:=
           `if`(l[i]=l[i+1], 5,
           `if`(l[i]>l[i+1], [2$2, 4$2][s], [5, 3$2, 5][s]))
          od; is(s=4)
        end:
    select(isprime and q, [$1..15000])[];  # Alois P. Heinz, Jan 26 2024
  • Python
    from sympy import isprime
    from itertools import combinations, islice
    def agen(): # generator of terms
        for d in range(4, 28):
            print(d)
            passed = set()
            for d1 in range(2, min(d-2, 9)+1):
                for c1 in combinations("123456789", d1):
                    for d2 in range(1, min(d-d1-1, 10)+1):
                        digits2 = list(map(str, range(int(c1[-1])-1, -1, -1)))
                        for c2 in combinations(digits2, d2):
                            digits3 = list(map(str, range(int(c2[-1])+1, 11)))
                            for c3 in combinations(digits3, d - d1 - d2):
                                t = int("".join(c1 + c2 + c3))
                                if isprime(t):
                                    passed.add(t)
            yield from sorted(passed)
    print(list(islice(agen(), 63))) # Michael S. Branicky, Jan 26 2024

A371378 Prime numbers wherein digit values decrease, increase, and finally decrease.

Original entry on oeis.org

1021, 1031, 1051, 1061, 1063, 1087, 1091, 1093, 1097, 2053, 2063, 2081, 2083, 2087, 2131, 2141, 2143, 2153, 2161, 3041, 3061, 3083, 3121, 3163, 3181, 3187, 3191, 3251, 3253, 3271, 4021, 4051, 4073, 4091, 4093, 4153, 4231, 4241, 4243, 4253, 4261, 4271, 4273, 4283
Offset: 1

Views

Author

James S. DeArmon, Mar 20 2024

Keywords

Comments

Terms must have at least 4 digits. The sequence is finite.
There are 3136837 terms, with the last being 98765432101234567987654321. - Michael S. Branicky, Mar 20 2024

Crossrefs

Programs

  • Maple
    q:= proc(n) local i, l, s;
          l, s:= convert(n, base, 10), 1;
          for i to nops(l)-1 while s<5 do s:=
           `if`(l[i]=l[i+1], 5,
           `if`(l[i]Alois P. Heinz, Mar 21 2024
  • Mathematica
    Select[Prime[Range[600]], SplitBy[Sign[Differences[IntegerDigits[#]]], Sign][[;; , 1]] == {-1, 1, -1} &] (* Amiram Eldar, Mar 21 2024 *)
  • Python
    from sympy import isprime
    from itertools import combinations, islice
    def agen(): # generator of terms
        for d in range(4, 29):
            print(d)
            passed = set()
            for d1 in range(2, min(d-2, 11)+1):
                for c1 in combinations("9876543210", d1):
                    for d2 in range(1, min(d-d1-1, 10)+1):
                        digits2 = list(map(str, range(int(c1[-1])+1, 10)))
                        for c2 in combinations(digits2, d2):
                            digits3 = list(map(str, range(int(c2[-1])-1, -1, -1)))
                            for c3 in combinations(digits3, d - d1 - d2):
                                t = int("".join(c1 + c2 + c3))
                                if isprime(t):
                                    passed.add(t)
            yield from sorted(passed)
    print(list(islice(agen(), 63))) # Michael S. Branicky, Mar 20 2024

Extensions

More terms from Michael S. Branicky, Mar 20 2024
Showing 1-5 of 5 results.