A062357 a(n) = n*p(n+1)-(n+1)*p(n) = n*d(n)-p(n), where p(n) is the n-th prime and d(n) is the n-th prime-difference, A001223(n).
-1, 1, 1, 9, -1, 11, -3, 13, 31, -9, 35, 11, -15, 13, 43, 43, -25, 47, 9, -31, 53, 9, 55, 103, 3, -49, 5, -51, 7, 307, -3, 61, -71, 201, -79, 65, 65, -11, 67, 67, -97, 239, -105, -17, -107, 353, 353, -31, -129, -29, 73, -135, 289, 73, 73, 73, -155, 77, -41, -161, 327, 575, -55, -183, -53, 607, 71, 343, -209, -69, 73, 217
Offset: 1
Examples
n = 10: a(10) = 10*31-11*29 = 310-319 = -9; n = 54: a(54) = 54*257-55*251 = 13878-13805 = 73; n = 55: a(55) = 55*263-56*257 = 14465-14392 = 73; consecutive terms are often equal to each other.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n*NthPrime(n + 1) - (n + 1)*NthPrime(n): n in [1..75]]; // Vincenzo Librandi, Jun 29 2018
-
Maple
seq(n*ithprime(n+1)-(n+1)*ithprime(n),n=1..80); # Muniru A Asiru, Jun 29 2018
-
Mathematica
Table[(Prime[w+1]-Prime[w])*w-Prime[w], {w, 1, 1024}]
-
PARI
a(n)={n*prime(n + 1) - (n + 1)*prime(n)} \\ Harry J. Smith, Aug 06 2009
Comments