cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062380 a(n) = Sum_{i|n,j|n} phi(i)*phi(j)/phi(gcd(i,j)), where phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 13, 28, 19, 42, 37, 52, 31, 98, 37, 76, 91, 114, 49, 148, 55, 182, 133, 124, 67, 294, 113, 148, 163, 266, 85, 364, 91, 290, 217, 196, 247, 518, 109, 220, 259, 546, 121, 532, 127, 434, 481, 268, 139, 798, 229, 452, 343, 518, 157, 652, 403, 798, 385
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

A176003 is a subsequence. - Peter Luschny, Sep 12 2012

Examples

			Let p be a prime then a(p) = phi(1)*tau(1)+phi(p)*tau(p^2) = 1+(p-1)*3 = 3*p-2. - _Peter Luschny_, Sep 12 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n->  add(phi(d)*tau(d^2), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] DivisorSigma[0, #^2]&]; Array[a, 60] (* Jean-François Alcover, Dec 05 2015 *)
    f[p_, e_] := ((2*e+1)*p^(e+1) - (2*e+3)*p^e + 2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)=sumdiv(n,i,eulerphi(i)*sumdiv(n,j,eulerphi(j)/eulerphi(gcd(i,j)))) \\ Charles R Greathouse IV, Sep 12 2012
  • Sage
    def A062380(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(euler_phi, map(lcm, cp)))
    [A062380(n) for n in (1..57)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) = Sum_{d|n} phi(d)*tau(d^2).
Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)(p^k-p^{k-1}) = ((2e+1)p^(e+1) - (2e+3)p^e+2)/(p-1). - Mitch Harris, May 24 2005
a(n) = Sum_{c|n,d|n} phi(lcm(c,d)). - Peter Luschny, Sep 10 2012
a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^2 ). - Seiichi Manyama, May 19 2024