A062380 a(n) = Sum_{i|n,j|n} phi(i)*phi(j)/phi(gcd(i,j)), where phi is Euler totient function.
1, 4, 7, 14, 13, 28, 19, 42, 37, 52, 31, 98, 37, 76, 91, 114, 49, 148, 55, 182, 133, 124, 67, 294, 113, 148, 163, 266, 85, 364, 91, 290, 217, 196, 247, 518, 109, 220, 259, 546, 121, 532, 127, 434, 481, 268, 139, 798, 229, 452, 343, 518, 157, 652, 403, 798, 385
Offset: 1
Examples
Let p be a prime then a(p) = phi(1)*tau(1)+phi(p)*tau(p^2) = 1+(p-1)*3 = 3*p-2. - _Peter Luschny_, Sep 12 2012
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= n-> add(phi(d)*tau(d^2), d=divisors(n)): seq(a(n), n=1..60); # Alois P. Heinz, Sep 12 2012
-
Mathematica
a[n_] := DivisorSum[n, EulerPhi[#] DivisorSigma[0, #^2]&]; Array[a, 60] (* Jean-François Alcover, Dec 05 2015 *) f[p_, e_] := ((2*e+1)*p^(e+1) - (2*e+3)*p^e + 2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
-
PARI
a(n)=sumdiv(n,i,eulerphi(i)*sumdiv(n,j,eulerphi(j)/eulerphi(gcd(i,j)))) \\ Charles R Greathouse IV, Sep 12 2012
-
Sage
def A062380(n) : d = divisors(n); cp = cartesian_product([d, d]) return reduce(lambda x,y: x+y, map(euler_phi, map(lcm, cp))) [A062380(n) for n in (1..57)] # Peter Luschny, Sep 10 2012
Formula
a(n) = Sum_{d|n} phi(d)*tau(d^2).
Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)(p^k-p^{k-1}) = ((2e+1)p^(e+1) - (2e+3)p^e+2)/(p-1). - Mitch Harris, May 24 2005
a(n) = Sum_{c|n,d|n} phi(lcm(c,d)). - Peter Luschny, Sep 10 2012
a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^2 ). - Seiichi Manyama, May 19 2024
Comments