cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082743 a(0)=1, a(1)=2; for n >= 2, a(n) is smallest palindrome greater than 1 which is congruent to 1 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 55, 11, 111, 121, 66, 99, 121, 33, 171, 55, 77, 101, 22, 111, 323, 121, 101, 131, 55, 141, 88, 121, 373, 33, 232, 171, 141, 181, 1111, 77, 313, 121, 575, 505, 44, 353, 181, 323, 424, 1441, 99, 101, 868, 313, 10601, 55, 111, 393, 343, 929, 414
Offset: 0

Views

Author

Amarnath Murthy, Apr 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[ FromDigits[ Reverse[ IntegerDigits[k]]] != k || Mod[k, n] != 1, k++ ]; k]; Table[ f[n], {n, 2, 60}]

Formula

a(n) = A077528(n) for n >= 2. - Georg Fischer, Oct 06 2018

Extensions

Edited and extended by Robert G. Wilson v, Apr 19 2003

A070244 Largest palindrome using minimum number of digits with a digit sum = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 55, 515, 66, 616, 77, 717, 88, 818, 99, 919, 929, 939, 949, 959, 969, 979, 989, 999, 9559, 95159, 9669, 96169, 9779, 97179, 9889, 98189, 9999, 99199, 99299, 99399, 99499, 99599, 99699, 99799, 99899, 99999
Offset: 0

Views

Author

Amarnath Murthy, May 05 2002

Keywords

Comments

No palindrome with lesser number of digits is possible.
All the palindromes using same (minimum) number of digits are smaller than a(n).

Crossrefs

Cf. A062388.

Extensions

a(0)=0 prepended by Michel Marcus, Aug 20 2015

A213341 Smallest palindrome with digital root n and n + 1 decimal digits.

Original entry on oeis.org

0, 55, 686, 6996, 79897, 799997, 8998998, 89999998, 999989999, 9999999999
Offset: 0

Views

Author

Keywords

Comments

Formula a(n) = (44/9*(10^n-1)+(10^n+1)*n) gives for n=0 ... 5 another sequence of palindromic terms a(0) = 0, a(1) = 55, a(2) = 686, a(3) = 7887, a(4) = 88888, a(5) = 988889 (which do not fully comply with the definition "smallest palindrome with digital root n and n+1 decimal digits" - because for n = 3, 4, 5 the terms are not the smallest ones possible).

Examples

			a(1) = 55 because there is no smaller two digit palindrome with a digital root of 1.
		

Crossrefs

Subsequence of A062388.

A354480 a(n) is the smallest decimal palindrome with Hamming weight n (i.e., with exactly n 1's when written in binary).

Original entry on oeis.org

0, 1, 3, 7, 77, 55, 111, 191, 383, 767, 5115, 11711, 15351, 30703, 81918, 97279, 744447, 978879, 1570751, 3665663, 8387838, 66911966, 66322366, 132111231, 199212991, 389545983, 939474939, 3204444023, 3220660223, 11542724511, 34258485243, 33788788733, 34292629243
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 02 2022

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice, product
    def pals(startd=1): # generator for base-10 palindromes
        for d in count(startd):
            for p in product("0123456789", repeat=d//2):
                if d//2 > 0 and p[0] == "0": continue
                left = "".join(p); right = left[::-1]
                for mid in [[""], "0123456789"][d%2]:
                    yield int(left + mid + right)
    def a(n):
        for p in pals(startd=len(str(2**n-1))):
            if bin(p).count("1") == n:
                return p
    print([a(n) for n in range(33)]) # Michael S. Branicky, Jun 02 2022

Extensions

a(21)-a(32) from Michael S. Branicky, Jun 02 2022
Showing 1-4 of 4 results.