A072539 Duplicate of A062391.
3, 5, 11, 13, 17, 23, 31, 43, 53, 61, 67, 71, 73, 79, 89, 101, 103, 107, 127, 139, 167
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
3+11+17 = 31, 11+17+19 = 47, 17+19+23 = 59, ...
A[1]:= 3: A[2]:= 11: for i from 3 to 100 do p:= A[i-1]; do p:= nextprime(p); if isprime(A[i-2]+A[i-1]+p) then A[i]:= p; break fi od od: seq(A[i],i=1..100); # Robert Israel, Jan 17 2023
a=3;b=11;lst={a,b};Do[c=Prime[n];p=a+b+c;If[PrimeQ[p],AppendTo[lst,c];a=b;b=c],{n,5,6!}];lst
A[1]:= 2: A[2]:= 3: S:= 5: for i from 3 to 50 do if S::even then A[i]:= nextprime(S+1) else A[i]:= nextprime(S-1) fi; S:= S + A[i] od: seq(A[i],i=1..50); # Robert Israel, May 01 2019
a=41;b=43;lst={a,b};Do[c=Prime[n];p=a+b+c;If[PrimeQ[p],AppendTo[lst,c];a=b;b=c],{n,15,5!}];lst
3+5+11=19; 11-(3+5)=3, 5+11+13=29; 13-(5+11)=-3, 11+13+17=41; 17-(11+13)=-7, 13+17+23=53; 23-(13+17)=-7,... .
R:= 3,5: count:= 2: a:= 3: b:= 5: for x from b+2 by 2 while count < 100 do if isprime(a+b+x) and isprime(abs(x-(a+b))) then R:= R, x; a:= b; b:= x; count:= count+1; fi od: R; # Robert Israel, Nov 29 2023
a=3;b=5;lst={a,b};Do[c=Prime[n];p1=c+a+b;p2=c-(a+b);If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,c];a=b;b=c],{n,5,9!}];lst
A:= 3,5,11,13: for n from 1 to 100 do s:= A[-1]+A[-2]; t:= s + A[-3]+A[-4]; for x from A[-1]+2 by 2 while not(isprime(x)) or not(isprime(x+s)) or not(isprime(x+t)) do od: A:= A, x; od: A; # Robert Israel, Mar 09 2017
a=3; b=5; c=11; d=13; lst={a, b, c, d}; Do[z=a+b+c+d+n; y=c+d+n; If[PrimeQ[z]&&n>b&&PrimeQ[n]&&PrimeQ[y], AppendTo[lst, n]; a=b; b=c; c=d; d=n], {n, 0, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
a=3;b=11;lst={a,b};Do[c=Prime[n];p1=c+a+b;p2=c-(a+b);If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,c];a=b;b=c],{n,5,9!}];lst
a=3;b=5;lst={a,b};Do[Do[If[PrimeQ[q]&&PrimeQ[a+b+q],c=q;Break[]],{q,a+2,9!,2}];AppendTo[lst,c];a=b;b=c,{n,6!}];lst
Comments