cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062393 a(n) = n^5 - (n-1)^5 + (n-2)^5 - ... +(-1)^n*0^5.

Original entry on oeis.org

0, 1, 31, 212, 812, 2313, 5463, 11344, 21424, 37625, 62375, 98676, 150156, 221137, 316687, 442688, 605888, 813969, 1075599, 1400500, 1799500, 2284601, 2869031, 3567312, 4395312, 5370313, 6511063, 7837844, 9372524, 11138625, 13161375
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-6)(P(5,1)-(-1)^k P(5,2k+1))|. - Peter Luschny, Jul 12 2009

Crossrefs

Cf. A000539, A000584. A062392 for 4th powers, A152725 for 6th powers.

Programs

  • Maple
    a := n -> (1-(-1)^n+n^2*(n^2*(2*n+5)-5))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    k=0;lst={k};Do[k=n^5-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[Total[(Times@@@Partition[Riffle[Range[n,0,-1],{1,-1},{2,-1,2}],2])^5],{n,0,30}] (* or *) LinearRecurrence[ {5,-9,5,5,-9,5,-1},{0,1,31,212,812,2313,5463},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062393.txt", n, " ", a=n^5 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = (2*n^5 + 5*n^4 - 5*n^2 + 1 - (-1)^n)/4 = n^5 - a(n-1).
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)/((x-1)^6*(x+1)). - Colin Barker, Sep 19 2012
a(0)=0, a(1)=1, a(2)=31, a(3)=212, a(4)=812, a(5)=2313, a(6)=5463, a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7). - Harvey P. Dale, Feb 01 2013