cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A062392 a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.

Original entry on oeis.org

0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n. - Roberto E. Martinez II, Jan 07 2002
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - Peter Luschny, Jul 12 2009
Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - J. M. Bergot, Jul 05 2013
a(n) is the sum of all positive numbers less than A002378(n). - J. M. Bergot, Aug 30 2013
Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - Waldemar Puszkarz, Sep 14 2017
a(n) is the semiperimeter of the unique primitive Pythagorean triple such that (a-b+c)/2 = T(n) = A000217(n). Its long leg and hypotenuse are consecutive natural numbers and the triple is (2*T(n) - 1, 2*T(n)*(T(n) - 1), 2*T(n)*(T(n) - 1) + 1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

Examples

			From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1   =                 -(1) + (2);
15  =             -(1 + 2) + (3 + 4 + 5 + 2*3);
66  =         -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 =     -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
Cf. A236770 (see crossrefs).

Programs

  • Maple
    a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n-1) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
a(n) = A000384(A000217(n)). - Bruno Berselli, Jan 31 2014
a(n) = A110450(n) - A002378(n). - Gionata Neri, May 13 2015
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
E.g.f.: exp(x)*x*(2 + 13*x + 8*x^2 + x^3)/2. - Stefano Spezia, Apr 27 2025
a(n) = A000217(n)*(2*A000217(n)-1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

A152725 a(n) = n*(n+1)*(n^4 + 2*n^3 - 2*n^2 - 3*n + 3)/2.

Original entry on oeis.org

0, 1, 63, 666, 3430, 12195, 34461, 83188, 178956, 352485, 647515, 1124046, 1861938, 2964871, 4564665, 6825960, 9951256, 14186313, 19825911, 27219970, 36780030, 48986091, 64393813, 83642076, 107460900, 136679725, 172236051, 215184438
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062392, A062393 (for 5th powers), A011934, A152726 (for 7th powers).

Programs

  • Magma
    [n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    k=0;lst={k};Do[k=n^6-k;AppendTo[lst,k],{n,1,5!}];lst
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,1,63,666,3430,12195,34461}, 50] (* G. C. Greubel, Sep 01 2018 *)
    CoefficientList[Series[-((x (1+56 x+246 x^2+56 x^3+x^4))/(-1+x)^7),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n)=n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = n^6 - (n-1)^6 + (n-2)^6 - ... + ((-1)^n)*0^6.
G.f.: x*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1-x)^7. - R. J. Mathar, Jul 08 2013
a(n) = A050492(A000217(n)). - Kelvin Voskuijl, Jun 18 2025
E.g.f.: exp(x)*x*(2 + 61*x + 160*x^2 + 95*x^3 + 18*x^4 + x^5)/2. - Stefano Spezia, Jun 19 2025

Extensions

Offset set to 0 by R. J. Mathar, Aug 15 2010

A261032 a(n) = (-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2.

Original entry on oeis.org

0, -1, 255, -6306, 59230, -331395, 1348221, -4416580, 12360636, -30686085, 69313915, -145044966, 284936730, -530793991, 944995065, -1617895560, 2677071736, -4298685705, 6721274871, -10262288170, 15337711830, -22485147531, 32390726005, -45920259276, 64155054900, -88432835725
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2015

Keywords

Comments

Alternating sum of eighth powers (A001016).
For n>0, a(n) is divisible by A000217(n).

Examples

			a(0) = 0^8 = 0,
a(1) = 0^8 -1^8 = -1,
a(2) = 0^8 -1^8 + 2^8 = 255,
a(3) = 0^8 -1^8 + 2^8 - 3^8 = -6306,
a(4) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 = 59230,
a(5) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 - 5^8 = -331395, etc.
		

Crossrefs

Programs

  • Magma
    [(-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2: n in [0..30]]; // Vincenzo Librandi, Nov 20 2015
    
  • Maple
    seq((-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2, n = 0 .. 100); # Robert Israel, Nov 18 2015
  • Mathematica
    Table[(1/2) (-1)^n n (n + 1) (n^6 + 3 n^5 - 3 n^4 - 11 n^3 + 11 n^2 + 17 n - 17), {n, 0, 25}]
  • PARI
    vector(100, n, n--; (-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2) \\ Altug Alkan, Nov 18 2015
    
  • Sage
    [(-1)^n*(n^8 +4*n^7 -14*n^5 +28*n^3 -17*n)/2 for n in (0..40)] # G. C. Greubel, Apr 02 2021

Formula

G.f.: -x*(1 - 246*x + 4047*x^2 - 11572*x^3 + 4047*x^4 - 246*x^5 + x^6)/(1 + x)^9.
a(n) = Sum_{k = 0..n} (-1)^k*k^8.
a(n) = (-1)^n*n*(n + 1)*(n^6 + 3*n^5 - 3*n^4 - 11*n^3 + 11*n^2 + 17*n - 17)/2.
Sum_{n>0} 1/a(n) = -0.9962225712723456482...
Sum_{j=0..9} binomial(9,j)*a(n-j) = 0. - Robert Israel, Nov 18 2015
E.g.f.: (x/2)*(-2 +253*x -1848*x^2 +2961*x^3 -1596*x^4 +350*x^5 -32*x^6 +x^7)*exp(-x). - G. C. Greubel, Apr 02 2021
Showing 1-4 of 4 results.