A062402 a(n) = sigma(phi(n)).
1, 1, 3, 3, 7, 3, 12, 7, 12, 7, 18, 7, 28, 12, 15, 15, 31, 12, 39, 15, 28, 18, 36, 15, 42, 28, 39, 28, 56, 15, 72, 31, 42, 31, 60, 28, 91, 39, 60, 31, 90, 28, 96, 42, 60, 36, 72, 31, 96, 42, 63, 60, 98, 39, 90, 60, 91, 56, 90, 31, 168, 72, 91, 63, 124, 42, 144, 63, 84, 60, 144
Offset: 1
Keywords
Examples
a(9)= 12 because phi(9)= 6 and sigma(6)= 12.
References
- Krassimir T. Atanassov, One property of φ and σ functions, Bull. Number Theory Related Topics 13 (1989), pp. 29-37.
- A. Makowski and A. Schinzel, On the functions phi(n) and sigma(n), Colloq. Math. 13, 95-99 (1964).
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 13.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- G. L. Cohen, On a conjecture of Makowski and Schinzel. Colloq. Math. 74, No. 1, 1-8 (1997).
- A. Grytczuk, F. Luca and M. Wojtowicz, On a conjecture of Makowski and Schinzel concerning the composition of the arithmetic functions sigma and phi, Colloq. Math. 86, No. 1, 31-36 (2000).
- F. Luca and C. Pomerance, On some problems of Makowski-Schinzel and Erdos concerning the arithmetical functions phi and sigma, Colloq. Math. 92, No. 1, 111-130 (2002).
Programs
-
Haskell
a062402 = a000203 . a000010 -- Reinhard Zumkeller, Jan 04 2013
-
Magma
[SumOfDivisors(EulerPhi(n)): n in [1..100]] // Marius A. Burtea, Jan 19 2019
-
Maple
with(numtheory); A062402:=n->sigma(phi(n)); seq(A062402(k), k=1..100); # Wesley Ivan Hurt, Nov 01 2013
-
Mathematica
Table[DivisorSigma[1, EulerPhi[n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
-
PARI
a(n)=sigma(eulerphi(n)); vector(150,n,a(n))
-
Python
from sympy import divisor_sigma, totient print([divisor_sigma(totient(n)) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
Comments