cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062402 a(n) = sigma(phi(n)).

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 7, 12, 7, 18, 7, 28, 12, 15, 15, 31, 12, 39, 15, 28, 18, 36, 15, 42, 28, 39, 28, 56, 15, 72, 31, 42, 31, 60, 28, 91, 39, 60, 31, 90, 28, 96, 42, 60, 36, 72, 31, 96, 42, 63, 60, 98, 39, 90, 60, 91, 56, 90, 31, 168, 72, 91, 63, 124, 42, 144, 63, 84, 60, 144
Offset: 1

Views

Author

Jason Earls, Jul 08 2001

Keywords

Comments

Makowski and Schinzel conjectured in 1964 that a(n) = sigma(phi(n)) >= n/2 for all n (B42 of Guy Unsolved Problems...). This has been verified for various classes of numbers and proved to be true in general if it is true for squarefree integers (see Cohen's paper). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
Atanassov proves the above conjecture. - Charles R Greathouse IV, Dec 06 2016

Examples

			a(9)= 12 because phi(9)= 6 and sigma(6)= 12.
		

References

  • Krassimir T. Atanassov, One property of φ and σ functions, Bull. Number Theory Related Topics 13 (1989), pp. 29-37.
  • A. Makowski and A. Schinzel, On the functions phi(n) and sigma(n), Colloq. Math. 13, 95-99 (1964).
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 13.

Crossrefs

Programs

  • Haskell
    a062402 = a000203 . a000010  -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    [SumOfDivisors(EulerPhi(n)): n in [1..100]] //  Marius A. Burtea, Jan 19 2019
  • Maple
    with(numtheory); A062402:=n->sigma(phi(n)); seq(A062402(k), k=1..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(eulerphi(n));
    vector(150,n,a(n))
    
  • Python
    from sympy import divisor_sigma, totient
    print([divisor_sigma(totient(n)) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017
    

Formula

sigma(A062401(x)) = a(sigma(x)) or phi(a(x)) = A062401(phi(x)). - Labos Elemer, Jul 22 2004