cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062547 a(n) is least odd integer not a partial sum of 1, 3, ..., a(n-1).

Original entry on oeis.org

1, 3, 5, 7, 17, 19, 53, 55, 161, 163, 485, 487, 1457, 1459, 4373, 4375, 13121, 13123, 39365, 39367, 118097, 118099, 354293, 354295, 1062881, 1062883, 3188645, 3188647, 9565937, 9565939, 28697813, 28697815, 86093441, 86093443, 258280325, 258280327, 774840977
Offset: 0

Views

Author

Wouter Meeussen, Jun 26 2001

Keywords

Examples

			Partial sums of 1;3;5 are 1;3;4;5;6;8;9 and 7 is the least missing odd integer, hence the next term is 7.
		

Crossrefs

Programs

  • Mathematica
    Table[ -1+ 2 3^Floor[k/2]+2 Mod[k, 2], {k, 0, 36}]
    LinearRecurrence[{-1,3,3},{1,3,5},40] (* Harvey P. Dale, Jul 14 2018 *)

Formula

a(2*n) = A048473(n); a(2n+1) = a(2n)+2.
For n > 0, a(2*n) = 3*a(2*n-1) - 4; a(2*n+1) = a(2*n) + 2 = A052919(n+1).
From Bruno Berselli, Jan 28 2011: (Start)
G.f.: (1+4*x+5*x^2)/((1+x)*(1-3*x^2)).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n > 2.
a(n) = 2*3^((2*n + (-1)^n - 1)/4) - (-1)^n. (End)

Extensions

Edited by Michel Marcus, Mar 16 2024