A062634 Numbers k such that every divisor of k contains the digit 1.
1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 241, 251, 271, 281, 311, 313, 317, 331, 341, 361, 401, 419, 421, 431, 451, 461, 491, 521
Offset: 1
Examples
143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a062634 n = a062634_list !! (n-1) a062634_list = filter (and . map ((elem '1') . show) . a027750_row) a011531_list -- Reinhard Zumkeller, Feb 05 2012
-
Maple
q:= n-> andmap(x-> 1 in convert(x, base, 10), numtheory[divisors](n)): select(q, [$1..1000])[]; # Alois P. Heinz, May 09 2022
-
Mathematica
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 525], fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
-
PARI
isok(m) = fordiv(m, d, if (! #select(x->(x==1), digits(d)), return(0))); return(1); \\ Michel Marcus, May 09 2022
Extensions
Offset corrected by Reinhard Zumkeller, Feb 05 2012
Comments