cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062634 Numbers k such that every divisor of k contains the digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 241, 251, 271, 281, 311, 313, 317, 331, 341, 361, 401, 419, 421, 431, 451, 461, 491, 521
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

First composite term is 121. All powers of 11 are in the sequence. - Alonso del Arte, Sep 29 2013

Examples

			143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
		

Crossrefs

Cf. A027750, subsequence of A011531; A206159 and A208270 are subsequences.
Cf. A001020 (powers of 11).

Programs

  • Haskell
    a062634 n = a062634_list !! (n-1)
    a062634_list = filter
       (and . map ((elem '1') . show) . a027750_row) a011531_list
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    q:= n-> andmap(x-> 1 in convert(x, base, 10), numtheory[divisors](n)):
    select(q, [$1..1000])[];  # Alois P. Heinz, May 09 2022
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 525], fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
  • PARI
    isok(m) = fordiv(m, d, if (! #select(x->(x==1), digits(d)), return(0))); return(1); \\ Michel Marcus, May 09 2022

Extensions

Offset corrected by Reinhard Zumkeller, Feb 05 2012