cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062678 Composite and every divisor (except 1) contains the digit 8.

Original entry on oeis.org

6889, 7387, 23489, 25187, 31789, 32287, 34087, 48721, 50861, 56689, 60787, 68143, 68309, 68641, 68807, 73289, 73781, 76807, 78053, 78409, 78587, 78943, 78961, 80089, 81589, 87487, 88147, 98023, 98521, 106489, 106987, 108389, 110087
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			7387 has divisors 83, 89 and 7387, each of which contains the digit 8.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..120000]|  not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 8 in Intseq(d)}];// Marius A. Burtea, Nov 07 2019
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 110100], !PrimeQ[#] && fQ[#, 8] &] (* Robert G. Wilson v, Jun 11 2014 *)
    dc8Q[n_]:=AllTrue[Rest[Divisors[n]],DigitCount[#,10,8]>0&]; Select[Range[ 111000],CompositeQ[ #]&&dc8Q[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2020 *)

Extensions

Offset corrected by Amiram Eldar, Nov 07 2019