A062678 Composite and every divisor (except 1) contains the digit 8.
6889, 7387, 23489, 25187, 31789, 32287, 34087, 48721, 50861, 56689, 60787, 68143, 68309, 68641, 68807, 73289, 73781, 76807, 78053, 78409, 78587, 78943, 78961, 80089, 81589, 87487, 88147, 98023, 98521, 106489, 106987, 108389, 110087
Offset: 1
Examples
7387 has divisors 83, 89 and 7387, each of which contains the digit 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[k:k in [2..120000]| not IsPrime(k) and forall{d:d in Set(Divisors(k)) diff {1}| 8 in Intseq(d)}];// Marius A. Burtea, Nov 07 2019
-
Mathematica
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 110100], !PrimeQ[#] && fQ[#, 8] &] (* Robert G. Wilson v, Jun 11 2014 *) dc8Q[n_]:=AllTrue[Rest[Divisors[n]],DigitCount[#,10,8]>0&]; Select[Range[ 111000],CompositeQ[ #]&&dc8Q[#]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2020 *)
Extensions
Offset corrected by Amiram Eldar, Nov 07 2019