cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A004159 Sum of digits of n^2.

Original entry on oeis.org

0, 1, 4, 9, 7, 7, 9, 13, 10, 9, 1, 4, 9, 16, 16, 9, 13, 19, 9, 10, 4, 9, 16, 16, 18, 13, 19, 18, 19, 13, 9, 16, 7, 18, 13, 10, 18, 19, 13, 9, 7, 16, 18, 22, 19, 9, 10, 13, 9, 7, 7, 9, 13, 19, 18, 10, 13, 18, 16, 16, 9, 13, 19, 27, 19, 13, 18, 25, 16, 18, 13, 10, 18, 19, 22, 18, 25, 25, 18, 13
Offset: 0

Views

Author

Keywords

Comments

If 3|n then 9|a(n); otherwise, a(n) == 1 (mod 3). - Jon E. Schoenfield, Jun 30 2018

Examples

			Trajectories under the map x -> a(x):
1 ->  1 ->  1 ->  1 ->  1 ->  1 ->  1 ->  1 ->  1 -> ...
2 ->  4 ->  7 -> 13 -> 16 -> 13 -> 16 -> 13 -> 16 -> ...
3 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 -> ...
4 ->  7 -> 13 -> 16 -> 13 -> 16 -> 13 -> 16 -> 13 -> ...
5 ->  7 -> 13 -> 16 -> 13 -> 16 -> 13 -> 16 -> 13 -> ...
6 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 ->  9 -> ...
7 -> 13 -> 16 -> 13 -> 16 -> 13 -> 16 -> 13 -> 16 -> ...
- _R. J. Mathar_, Jul 08 2012
		

Crossrefs

Cf. A240752 (first differences), A071317 (partial sums).
Cf. A062685 (smallest square with digit sum n, or 0 if no such square exists).

Programs

  • Haskell
    a004159 = a007953 . a000290  -- Reinhard Zumkeller, Apr 12 2014
    
  • Maple
    read("transforms"):
    A004159 := proc(n)
            digsum(n^2) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    a004159[n_Integer] := Apply[Plus, IntegerDigits[n^2]]; Table[
    a004159[n], {n, 0, 100}] (* Michael De Vlieger, Jul 21 2014 *)
    Total[IntegerDigits[#]]&/@(Range[0,100]^2) (* Harvey P. Dale, Feb 03 2019 *)
  • PARI
    A004159(n)=sumdigits(n^2) \\ M. F. Hasler, Sep 23 2014
  • Python
    def A004159(n):
        return sum(int(d) for d in str(n*n)) # Chai Wah Wu, Sep 03 2014
    

Formula

a(n) = A007953(A000290(n)); a(A058369(n)) = A007953(A058369(n)). - Reinhard Zumkeller, Apr 25 2009
a(10n) = a(n). If n > 1 is not a multiple of 10, then a(n)=4 iff n = 10^k+1 = A062397(k), a(n)=7 iff n is in A215614={4, 5, 32, 49, 149, 1049}, and else a(n) >= 9. - M. F. Hasler, Sep 23 2014

A359003 a(n) is the smallest n-gonal number whose sum of digits is n.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 370, 506, 156, 238, 671, 726, 88, 836, 585, 775, 7337, 5268, 8149, 8555, 8961, 9367, 9773, 15786, 9856, 91964, 65757, 89428, 179960, 47796, 108979, 197945, 86976, 467974, 998516, 259896, 598792, 1737788, 869649, 969991, 1985984, 998676, 3798496, 7979546, 5877696
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 10 2022

Keywords

Examples

			370 is the smallest 10-gonal number with digit sum 10, so a(10) = 370.
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := (n - 2)*k*(k - 1)/2 + k; a[n_] := Module[{k = 1, pk}, While[Plus @@ IntegerDigits[pk = p[n, k]] != n, k++]; pk]; Array[a, 45, 3] (* Amiram Eldar, Dec 10 2022 *)
Showing 1-2 of 2 results.