cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 71 results. Next

A240752 First differences of digit sums of squares, cf. A004159.

Original entry on oeis.org

1, 3, 5, -2, 0, 2, 4, -3, -1, -8, 3, 5, 7, 0, -7, 4, 6, -10, 1, -6, 5, 7, 0, 2, -5, 6, -1, 1, -6, -4, 7, -9, 11, -5, -3, 8, 1, -6, -4, -2, 9, 2, 4, -3, -10, 1, 3, -4, -2, 0, 2, 4, 6, -1, -8, 3, 5, -2, 0, -7, 4, 6, 8, -8, -6, 5, 7, -9, 2, -5, -3, 8, 1, 3, -4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 12 2014

Keywords

Crossrefs

Programs

  • Haskell
    a240752 n = a240752_list !! (n-1)
    a240752_list = zipWith (-) (tail a004159_list) a004159_list
    
  • Mathematica
    Differences[Total[IntegerDigits[#]]&/@(Range[0,80]^2)] (* Harvey P. Dale, Mar 10 2019 *)
  • PARI
    a(n) = sumdigits(n^2) - sumdigits((n-1)^2); \\ Michel Marcus, Jan 24 2022
    
  • Python
    def A240752(n): return sum(map(int,str(m:=n**2)))-sum(map(int,str(m-(n<<1)+1))) # Chai Wah Wu, Mar 15 2023

Formula

a(n) = A004159(n) - A004159(n-1).
a(n) = A007953(A000290(n)) - A007953(A000290(n-1)).
a(A202089(n)+1) = 0; a(A239878(n)+1) = 1; a(A240754(n)+1) = -1.

Extensions

Formulas adapted to offset by Michel Marcus, Jan 25 2022

A000290 The squares: a(n) = n^2.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Keywords

Comments

To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011
Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002
Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004
Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004
Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004
See also A000037.
First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)
Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008
Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008
Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008
Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008
a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009
a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009
Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009
Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009
Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010
Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010
Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011
Partial sums give A000330. - Omar E. Pol, Jan 12 2013
Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013
a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-1, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - binomial(n, 3)]. - John Molokach, Sep 26 2013
In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013
Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013
Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013
For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014
For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016
On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016
On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016
Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017
Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017
Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022
Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Number of intercalates in cyclic Latin squares of order 2n (cyclic Latin squares of odd order do not have intercalates). - Eduard I. Vatutin, Feb 15 2024
a(n) is the number of ternary strings of length n with at most one 0, exactly one 1, and no restriction on the number of 2's. For example, a(3)=9, consisting of the 6 permutations of the string 102 and the 3 permutations of the string 122. - Enrique Navarrete, Mar 12 2025

Examples

			For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - _Bruno Berselli_, May 04 2010
G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...
a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - _Viktar Karatchenia_, Mar 02 2016
		

References

  • G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Chapter XV, pp. 135-167.
  • R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 31, 36, 38, 63.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology and §8.6 Figurate Numbers, pp. 264, 290-291.
  • Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 35, 52-53, 129-132, 244.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.
  • C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.
  • R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).
A row or column of A132191.
This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009
Boustrophedon transforms: A000697, A000745.
Cf. A342819.
Cf. A013661.

Programs

Formula

G.f.: x*(1 + x) / (1 - x)^3.
E.g.f.: exp(x)*(x + x^2).
Dirichlet g.f.: zeta(s-2).
a(n) = a(-n).
Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001
Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005
From Pierre CAMI, Oct 22 2006: (Start)
a(n) is the sum of the odd numbers from 1 to 2*n - 1.
a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)
For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007
a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007
Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007
Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = binomial(n+1, 2) + binomial(n, 2).
This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008
From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008
The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008
a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009
Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009
a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010
a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = a(n-1) + a(n-2) - a(n-3) + 4, n > 2. - Gary Detlefs, Sep 07 2010
a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010
Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011
A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011
a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].
Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.
A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011
A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011
a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011
For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012
a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012
a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013
a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013
a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014
a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014
a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014
a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015
From Ilya Gutkovskiy, Jun 21 2016: (Start)
Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.
Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)
a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017
For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021
a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021
From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,
a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021
Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022
a(n) = Sum_{k=1..n} sigma_1(k) + Sum_{i=1..n} (n mod i). - Vadim Kataev, Dec 07 2022
a(n^2) + a(n^2+1) + ... + a(n^2+n) + 4*A000537(n) = a(n^2+n+1) + ... + a(n^2+2n). In general, if P(k,n) = the n-th k-gonal number, then P(2k,n^2) + P(2k,n^2+1) + ... + P(2k,n^2+n) + 4*(k-1)*A000537(n) = P(2k,n^2+n+1) + ... + P(2k,n^2+2n). - Charlie Marion, Apr 26 2024
Sum_{n>=1} 1/a(n) = A013661. - Alois P. Heinz, Oct 19 2024
a(n) = 1 + 3^3*((n-1)/(n+1))^2 + 5^3*((n-1)*(n-2)/((n+1)*(n+2)))^2 + 7^3*((n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)))^2 + ... for n >= 1. - Peter Bala, Dec 09 2024

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A159918 Number of ones in binary representation of n^2.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 5, 2, 4, 3, 4, 1, 3, 3, 5, 3, 6, 5, 3, 2, 5, 4, 6, 3, 5, 4, 5, 1, 3, 3, 5, 3, 6, 5, 7, 3, 5, 6, 7, 5, 8, 3, 4, 2, 5, 5, 5, 4, 8, 6, 7, 3, 6, 5, 7, 4, 6, 5, 6, 1, 3, 3, 5, 3, 6, 5, 7, 3, 6, 6, 9, 5, 7, 7, 5, 3, 6, 5, 8, 6, 7, 7, 7, 5, 9, 8, 5, 3, 6, 4, 5, 2, 5, 5, 6, 5, 9, 5, 7, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2009

Keywords

Comments

The binary weight (A000120) of n^2.
a(n) = 0 iff n = 0. a(n) = 1 iff n = 2^k for some k >= 0. a(n) = 2 iff n = 3*2^k for some k >= 0. Szalay proves that a(n) = 3 iff n = 7*2^k, 23*2^k, or 2^a + 2^b for k >= 0 and a > b >= 0. It seems that a(n) = 4 iff n = 13*2^k, 15*2^k, 47*2^k, or 111*2^k but this has not been proven! Any other n with a(n) = 4 are greater than 10^50, and there are finitely many odd solutions. - Charles R Greathouse IV, Jan 20 2022

References

  • L. Szalay, The equations 2^n ± 2^m ± 2^l = z^2, Indagationes Mathematicae (N.S.) 13, no. 1 (2002), pp. 131-142.

Crossrefs

Programs

Formula

a(n) = A000120(A000290(n)); a(A077436(n)) = A000120(A077436(n)).
Lindström shows that lim sup wt(m^2)/log_2 m = 2. - N. J. A. Sloane, Oct 11 2013
a(n) = [x^(n^2)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018

A061909 Skinny numbers: numbers n such that there are no carries when n is squared by "long multiplication".

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 130, 200, 201, 202, 210, 211, 212, 220, 221, 300, 301, 310, 311, 1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1020, 1021, 1022, 1030, 1031, 1100, 1101, 1102
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2007

Keywords

Comments

There are several equivalent formulations. Suppose the decimal expansion of n is n = Sum_{i = 0..k } d_i 10^i, where 0 <= d_i <= 9 for i = 0..k.
Then n is skinny if and only if:
(i) e_i = Sum_{ j = 0..i } d_j d_{i-j} <= 9 for i = 0 .. 2k-1;
(ii) if P_n(X) = Sum_{i = 0..k } d_i X^i (so P_n(10) = n) then P_{n^2}(X) = P_n(X)^2;
(iii) R(n^2) = R(n)^2, where R(n) means the digit reversal of n;
(iv) (sum of digits of n)^2 = sum of digits of n^2.
This entry is a merging and reworking of earlier entries from Asher Auel, May 17 2001 and Amarnath Murthy, Aug 15 2005. Thanks to Andrew S. Plewe for suggesting that these sequences might be identical.
Also, numbers n in base 10 whose base 10 expansion of n^2 is the same as if n were interpreted in some base b>10 and n^2 also calculated in that base. - Andrew Silberman (sandrew(AT)math.upenn.edu), Oct 30 2006
From David Applegate and N. J. A. Sloane, Jun 14 2007: (Start)
The decimal expansion of a skinny number n may contain only 0's, 1's, 2's and 3's.
There may be at most one 3 and if there is a 3 then there can be no 2's. (Hence of course if there are any 2's then there can be no 3's.)
There is no limit to the number of 1's and 2's - consider for example Sum_{i=0..m} 10^{2^i} and 2*Sum_{i=0..m} 10^{2^i}.
These are necessary conditions, but are not sufficient (e.g., 131 is not skinny). (End)
There are fifty-five skinny numbers without a 0 digit, the greatest being a(5203) = 111111111. - Jason Zimba, Jul 05 2020

Examples

			12 is a member as 12^2 = 144, digit reversal of 144 is 441 = 21^2.
13 is a member as 13 squared is 169 and sqrt(961) = 31.
113 is a member as 113^2 = 12769, reversal(12769) = 96721 = 311^2.
(Sum of digits of 13)^2 = 4^2 = 16 and sum of digits of 13^2 = sum of digits of 169 = 16.
10^k is in the sequence for all k >= 0, since reversal((10^k)^2) = 1 = (reversal(10^k))^2. - _Ryan Propper_, Sep 09 2005
		

Crossrefs

A085305 is a subsequence.
The primes in this sequence are given by A085306.
Numbers n such that A067552(n) = 0.

Programs

  • Haskell
    a061909 n = a061909_list !! (n-1)
    a061909_list = filter (\x -> a004086 (x^2) == (a004086 x)^2) [0..]
    -- Reinhard Zumkeller, Jul 08 2011
    
  • Maple
    rev:=proc(n) local nn, nnn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a:=proc(n) if sqrt(rev(n^2))=rev(n) then n else fi end: seq(a(n),n=1..1200); # Emeric Deutsch, Mar 31 2007
    f := []: for n from 1 to 1000 do if (convert(convert(n,base,10),`+`))^2 = convert(convert(n^2,base,10),`+`) then f := [op(f), n] fi; od; f; # Asher Auel
  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[r[n]^2 == r[n^2], Print[n]], {n, 1, 10^4}] (* Ryan Propper, Sep 09 2005 *)
    Select[Range[0,1200],IntegerReverse[#^2]==IntegerReverse[#]^2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    is(n)=sumdigits(n)^2==sumdigits(n^2) \\ Charles R Greathouse IV, Jun 21 2017
    
  • Python
    from itertools import count, islice, product
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return sd(n**2) == sd(n)**2
    def agen(): # generator of terms
        yield from [0, 1, 2, 3]
        for d in count(2):
            for f in "123":
                rset = "01" if f == "3" else "012" if f == "2" else "0123"
                for r in product(rset, repeat=d-1):
                    t = int(f+"".join(r))
                    if ok(t): yield t
    print(list(islice(agen(), 53))) # Michael S. Branicky, Dec 23 2022

Formula

a(n) >> n^2.0959..., where the exponent is log 10/log 3. - Charles R Greathouse IV, Sep 21 2012

A061910 Positive numbers k such that sum of digits of k^2 is a square.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22, 23, 30, 31, 39, 41, 45, 48, 51, 58, 59, 60, 67, 68, 76, 77, 85, 86, 90, 94, 95, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 120, 121, 122, 130, 131, 139, 140, 148, 150, 157, 158, 166, 175, 176, 180, 184, 185
Offset: 1

Views

Author

Asher Auel, May 17 2001

Keywords

Examples

			6^2 = 36 and 3+6 = 9 is a square. 13^2 = 169 and 1+6+9 = 16 is a square.
		

Crossrefs

Sequence A293832 gives the start of the first run of n consecutive values.

Programs

  • Magma
    [ n: n in [1..185] | IsSquare(&+Intseq(n^2)) ];  // Bruno Berselli, Jul 29 2011
    
  • Maple
    readlib(issqr): f := []: for n from 1 to 200 do if issqr(convert(convert(n^2,base,10),`+`)) then f := [op(f), n] fi; od; f;
  • Mathematica
    Select[Range[185], IntegerQ[Sqrt[Total[IntegerDigits[#^2]]]] &] (* Jayanta Basu, May 06 2013 *)
  • PARI
    is(n)=n=eval(Vec(Str(n^2)));issquare(sum(i=1,#n,n[i])) \\ Charles R Greathouse IV, Jul 29 2011
    
  • PARI
    select( is_A061910(n)=issquare(sumdigits(n^2)), [0..199]) \\ Includes the initial 0. - M. F. Hasler, Oct 16 2017
    
  • Python
    from gmpy2 import is_square
    A061910 = [n for n in range(1,10**3) if is_square(sum(int(d) for d in str(n*n)))] # Chai Wah Wu, Sep 03 2014

A058369 Numbers k such that k and k^2 have same digit sum.

Original entry on oeis.org

0, 1, 9, 10, 18, 19, 45, 46, 55, 90, 99, 100, 145, 180, 189, 190, 198, 199, 289, 351, 361, 369, 379, 388, 450, 451, 459, 460, 468, 495, 496, 550, 558, 559, 568, 585, 595, 639, 729, 739, 775, 838, 855, 900, 954, 955, 990, 999, 1000, 1098, 1099, 1179, 1188, 1189
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 17 2000

Keywords

Comments

It is interesting that the graph of this sequence appears almost identical as the maximum value of n increases by factors of 10. Compare the graph of the b-file (having numbers up to 10^6) with the plot of the terms up to 10^8. - T. D. Noe, Apr 28 2012
If iterated digit sum (A010888, A056992) is used instead of just digit sum (A007953, A004159), we get A090570 of which this sequence is a subset. - Jeppe Stig Nielsen, Feb 18 2015
Hare, Laishram, & Stoll show that this sequence (indeed, even its subsequence A254066) is infinite. In particular for each k in {846, 847, 855, 856, 864, 865, 873, ...} there are infinitely many terms in this sequence not divisible by 10 that have digit sum k. - Charles R Greathouse IV, Aug 25 2015
There are infinitely many n such that both n and n+1 are in the sequence. This includes A002283. - Robert Israel, Aug 26 2015

Examples

			Digit sum of 9 = 9 9^2 = 81, 8+1 = 9 digit sum of 145 = 1+4+5 = 10 145^2 = 21025, 2+1+0+2+5 = 10 digit sum of 954 = 9+5+4 = 18 954^2 = 910116, 9+1+0+1+1+6 = 18. - Florian Roeseler (hazz_dollazz(AT)web.de), May 03 2010
		

Crossrefs

Cf. A147523 (number of numbers in each decade).
Subsequence of A090570.

Programs

  • Haskell
    import Data.List (elemIndices)
    import Data.Function (on)
    a058369 n = a058369_list !! (n-1)
    a058369_list =
       elemIndices 0 $ zipWith ((-) `on` a007953) [0..] a000290_list
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Magma
    [n: n in [0..1200] |(&+Intseq(n)) eq (&+Intseq(n^2))]; // Vincenzo Librandi, Aug 26 2015
    
  • Maple
    sd := proc (n) options operator, arrow: add(convert(n, base, 10)[j], j = 1 .. nops(convert(n, base, 10))) end proc: a := proc (n) if sd(n) = sd(n^2) then n else end if end proc; seq(a(n), n = 0 .. 1400); # Emeric Deutsch, May 11 2010
    select(t -> convert(convert(t,base,10),`+`)=convert(convert(t^2,base,10),`+`),
    [seq(seq(9*i+j,j=0..1),i=0..1000)]); # Robert Israel, Aug 26 2015
  • Mathematica
    Select[Range[0,1200],Total[IntegerDigits[#]]==Total[IntegerDigits[ #^2]]&] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    is(n)=sumdigits(n)==sumdigits(n^2) \\ Charles R Greathouse IV, Aug 25 2015
    
  • Python
    def ds(n): return sum(map(int, str(n)))
    def ok(n): return ds(n) == ds(n**2)
    def aupto(nn): return [m for m in range(nn+1) if ok(m)]
    print(aupto(1189)) # Michael S. Branicky, Jan 09 2021

Formula

A007953(a(n)) = A004159(a(n)). - Reinhard Zumkeller, Apr 25 2009

Extensions

Edited by N. J. A. Sloane, May 30 2010

A004164 Sum of digits of n^3.

Original entry on oeis.org

0, 1, 8, 9, 10, 8, 9, 10, 8, 18, 1, 8, 18, 19, 17, 18, 19, 17, 18, 28, 8, 18, 19, 17, 18, 19, 26, 27, 19, 26, 9, 28, 26, 27, 19, 26, 27, 19, 26, 27, 10, 26, 27, 28, 26, 18, 28, 17, 18, 28, 8, 18, 19, 35, 27, 28, 26, 27, 19, 26, 9, 28, 26, 18, 19, 26, 36, 19
Offset: 0

Views

Author

Keywords

Comments

For the digital root of n^3 see A073636.
The greedy inverse is 1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, 14, 9, 13, -1, -1, .. where -1 means the inverse does not exist. Essentially provided by A067177. - R. J. Mathar, Jul 19 2024

Crossrefs

Programs

A055565 Sum of digits of n^4.

Original entry on oeis.org

0, 1, 7, 9, 13, 13, 18, 7, 19, 18, 1, 16, 18, 22, 22, 18, 25, 19, 27, 10, 7, 27, 22, 31, 27, 25, 37, 18, 28, 25, 9, 22, 31, 27, 25, 19, 36, 28, 25, 18, 13, 31, 27, 25, 37, 18, 37, 43, 27, 31, 13, 27, 25, 37, 27, 28, 43, 18, 31, 22, 18, 34, 37, 36, 37, 34, 45, 13, 31, 27, 7
Offset: 0

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			a(2) = 7 because 2^4 = 16 and 1+6 = 7.
		

Crossrefs

Cf. A000583, A007953, A055570, A055575 (fixed points), A373914.

Programs

  • Maple
    for i from 0 to 200 do printf(`%d,`,add(j, j=convert(i^4, base, 10))) od;
  • Mathematica
    a[n_Integer]:=Apply[Plus, IntegerDigits[n^4]]; Table[a[n], {n, 0, 100}] (* Vincenzo Librandi, Feb 23 2015 *)
  • PARI
    a(n) = sumdigits(n^4); \\ Seiichi Manyama, Nov 16 2021
  • Sage
    [sum((n^4).digits()) for n in (0..70)] # Bruno Berselli, Feb 23 2015
    

Formula

a(n) = A007953(A000583(n)). - Michel Marcus, Feb 23 2015

Extensions

More terms from James Sellers, Jul 04 2000

A055566 Sum of digits of n^5.

Original entry on oeis.org

0, 1, 5, 9, 7, 11, 27, 22, 26, 27, 1, 14, 27, 25, 29, 36, 31, 35, 45, 37, 5, 18, 25, 29, 36, 40, 35, 36, 28, 23, 9, 34, 29, 36, 31, 35, 36, 46, 41, 36, 7, 29, 27, 31, 35, 36, 46, 32, 45, 43, 11, 27, 22, 44, 36, 37, 41, 36, 52, 47, 27, 40, 35, 45, 37, 32, 36, 25, 47, 36, 22, 35
Offset: 0

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 5 because 2^4 = 32 and 3+2 = 5.
Trajectories under the map x->a(x):
1 ->1 ->1 ->1 ->1 ->1 ->1 ->1 ->1 ->..
2 ->5 ->11 ->14 ->29 ->23 ->29 ->23 ->29 ->..
3 ->9 ->27 ->36 ->36 ->36 ->36 ->36 ->36 ->..
4 ->7 ->22 ->25 ->40 ->7 ->22 ->25 ->40 ->..
5 ->11 ->14 ->29 ->23 ->29 ->23 ->29 ->23 ->..
6 ->27 ->36 ->36 ->36 ->36 ->36 ->36 ->36 ->..
7 ->22 ->25 ->40 ->7 ->22 ->25 ->40 ->7 ->..
		

Crossrefs

Programs

  • Maple
    read("transforms") :
    A055566 := proc(n)
            digsum(n^5) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Table[Total[IntegerDigits[n^5]],{n,0,80}] (* Harvey P. Dale, Feb 12 2023 *)
  • PARI
    a(n) = sumdigits(n^5); \\ Seiichi Manyama, Nov 16 2021
Showing 1-10 of 71 results. Next