cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A129967 a(n) = A061909(n)^2.

Original entry on oeis.org

0, 1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 900, 961, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 40000, 40401, 40804, 44100, 44521, 44944, 48400, 48841, 90000, 90601, 96100, 96721, 1000000, 1002001, 1004004, 1006009
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2007

Keywords

A129968 a(n) = sum of digits of A061909(n).

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 4, 2, 3, 4, 3, 4, 5, 4, 5, 3, 4, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 5, 3, 4, 5, 4, 5, 6, 5, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 3, 4, 2, 3
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2007

Keywords

A129969 a(n) = A061909(n) with digits reversed.

Original entry on oeis.org

1, 2, 3, 1, 11, 21, 31, 2, 12, 22, 3, 13, 1, 101, 201, 301, 11, 111, 211, 311, 21, 121, 221, 31, 2, 102, 202, 12, 112, 212, 22, 122, 3, 103, 13, 113, 1, 1001, 2001, 3001, 101, 1101, 2101, 3101, 201, 1201, 2201, 301, 1301, 11, 1011, 2011
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2007

Keywords

Programs

  • Mathematica
    Rest[IntegerReverse/@Select[Range[0,1200],IntegerReverse[#^2]==IntegerReverse[#]^2&]] (* Harvey P. Dale, Dec 01 2024 *)

A123977 Complement of A061909 (skinny numbers).

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2010

Keywords

A130596 Partial sums of skinny numbers (A061909).

Original entry on oeis.org

1, 3, 6, 16, 27, 39, 52, 72, 93, 115, 145, 176, 276, 377, 479, 582, 692, 803, 915, 1028, 1148, 1269, 1391, 1521, 1721, 1922, 2124, 2334, 2545, 2757, 2977, 3198, 3498, 3799, 4109, 4420, 5420, 6421, 7423, 8426, 9436, 10447, 11459, 12472, 13492, 14513, 15535
Offset: 1

Views

Author

Jonathan Vos Post, Jun 17 2007

Keywords

Comments

The skinny partial sums of skinny numbers begin: a(1) = 1, a(2) = 3. The primes in the sequence begin: a(2) = 3, a(15) = 479, a(15) = 1721, a(38) = 6421, a(52) = 20899. The perfect powers in the sequence begin a(4) = 16 = 2^4, a(5) = 27 = 3^3, a(24) = 1521 = 39^2.

Examples

			a(36) = 4420 = 1+2+3+10+11+12+13+20+21+22+30+31+100+101+102+103+110+111+112+113+120+121+122+130+200+201+202+210+211+212+220+221+300+301+310+311
		

Programs

  • Mathematica
    Accumulate[Select[Range[0,1200],IntegerReverse[#^2]==IntegerReverse[#]^2&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)

A159952 Skinny numbers (A061909) containing no 3's.

Original entry on oeis.org

0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211, 1212
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2010

Keywords

Comments

a(n) first differs from A007089(n-1) at a(27) = 1000, which does not equal 222 = A007089(26). - Jason Kimberley, Dec 13 2012

A169939 Skinny numbers (A061909) containing no 2's.

Original entry on oeis.org

0, 1, 3, 10, 11, 13, 30, 31, 100, 101, 103, 110, 111, 113, 130, 300, 301, 310, 311, 1000, 1001, 1003, 1010, 1011, 1013, 1030, 1031, 1100, 1101, 1103, 1110, 1111, 1113, 1130, 1300, 1301, 3000, 3001, 3010, 3011, 3100, 3101, 3110, 3111, 10000, 10001, 10003, 10010
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2010

Keywords

A224792 Smallest skinny number (A061909) with digit sum n.

Original entry on oeis.org

0, 1, 2, 3, 13, 113, 1113, 11113, 1011113, 101011113, 1101111211, 110101111211, 100110101111211, 10101010101101122, 1011111111100000013, 1010111111111000000022, 111000010111000111111111, 1010110111101110100000011111, 1111111110010101100001100000102
Offset: 0

Views

Author

Reiner Moewald, Apr 18 2013

Keywords

Comments

The smallest m >= 0 with sum of digits of (m) = n and sum of digits of (m^2) = (sum of digits of (m))^2.
There are infinitely many natural numbers m >= 0 with sum of digits of (m) = n and sum of digits of (m^2) = (sum of digits of (m))^2.

Crossrefs

Cf. A061909.

Programs

  • Mathematica
    DS[n_] := Total[IntegerDigits[n]]; nn = 10; t = Table[0, {nn}]; n = 0; found = 0; While[n++; r = FromDigits[IntegerDigits[n, 4]]; found < nn, If[DS[r]^2 == DS[r^2] && DS[r] <= nn && t[[DS[r]]] == 0, t[[DS[r]]] = r;  found++; Print[r]]]; Join[{0}, t] (* T. D. Noe, Apr 18 2013 *)

Formula

a(n) > 2/9 * 10^(n/2) for n > 4. - Charles R Greathouse IV, Apr 18 2013

Extensions

a(10) corrected and a(11) added by T. D. Noe, Apr 18 2013
a(12)-a(13) from Donovan Johnson, Apr 19 2013
a(14) from Donovan Johnson, Apr 24 2013
a(15)-a(18) from Hiroaki Yamanouchi, Aug 28 2014

A069967 Duplicate of A061909.

Original entry on oeis.org

1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100, 101, 102, 103, 110, 111, 112, 113
Offset: 0

Views

Author

Keywords

A169942 Number of Golomb rulers of length n.

Original entry on oeis.org

1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019

Examples

			For n=2, there is one Golomb Ruler: {0,2}.  For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012
From _Gus Wiseman_, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (231)  (61)   (71)
                                     (124)  (125)
                                     (142)  (143)
                                     (214)  (152)
                                     (241)  (215)
                                     (412)  (251)
                                     (421)  (341)
                                            (512)
                                            (521)
(End)
		

Crossrefs

Related to thickness: A169940-A169954, A061909.
Related to Golomb rulers: A036501, A054578, A143823.
Row sums of A325677.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15}] (* Gus Wiseman, May 16 2019 *)
  • Sage
    def A169942(n):
        R = QQ['x']
        return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
    [A169942(n) for n in range(1,8)]
    # Tomas Boothby, May 15 2012

Formula

a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012
Showing 1-10 of 36 results. Next