cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A178481 Number of steps of the map x -> A055566(x), starting at n, before reaching the end of the cycle.

Original entry on oeis.org

0, 0, 5, 3, 4, 4, 2, 3, 2, 2, 1, 3, 2, 4, 2, 1, 2, 1, 2, 2, 5, 3, 3, 1, 1, 3, 1, 1, 0, 1, 3, 1, 2, 1, 1, 0, 0, 1, 3, 1, 3, 2, 2, 2, 1, 1, 0, 3, 2, 3, 4, 2, 4, 2, 1, 2, 3, 1, 5, 4, 2, 4, 1, 2, 2, 3, 1, 4, 4, 1, 4, 1, 2, 2, 3, 2, 3, 4, 2, 4, 2
Offset: 0

Views

Author

Michel Lagneau, May 28 2010

Keywords

Comments

a(n) is the number of times taking the 5th powers of the sums of digits before reaching a sum seen before (reaching the last number of the cycle).
Example:
6 -> 6^5 = 7776 -> (7+7+7+6)^5 = 27^5.
27^5 = 14348907 -> (1+4+3+4+8+9+0+7)^5 = 36^5.
36^5 = 60466176, last number of the cycle because (6+0+4+6+6+1+7+6)^5 = 36^5 = 60466176 belongs to the list.
Generalization for the k-th powers and conjecture: For each k >= 1, iteration of taking the k-th powers of digit sums reaches a cycle.
Example with k = 17; start with 3.
3^17 = 129140163, sum = 27,
27^17 = 2153693963075557766310747, sum = 117,
117^17 = 144264558065210807467328187211661877, sum = 153,
153^17 = 13796036156758195415808856807283698713, sum = 189,
189^17 = 501014933601411817143935347829544613629, sum = 153 is already in the set.
[It remains unclear whether the author wanted to define iterations of (sumofdigits of n)^5, compatible with A177148 and A182128, or sumofdigits(n^5) here. I've taken the latter to be more compliant with the first terms of the original submission. - R. J. Mathar, Jul 08 2012]

Examples

			a(0) = 0 and a(1) = 0 because 0 -> 0 and 1 -> 1.
a(15) = 1 because 15^5 = 759375 -> (7+5+9+3+7+5) = 36,
36 ^5 = 60466176 -> (6+0+4+6+6+1+7+6) = 36.
		

Crossrefs

Programs

  • Maple
    A178481 := proc(n)
            local traj ,c;
            traj := n ;
            c := [n] ;
            while true do
                    traj := A055566(traj) ;
                    if member(traj,c) then
                            return nops(c)-1 ;
                    end if;
                    c := [op(c),traj] ;
            end do:
    end proc:
    seq(A178481(n),n=0..80) ; # R. J. Mathar, Jul 08 2012

A055565 Sum of digits of n^4.

Original entry on oeis.org

0, 1, 7, 9, 13, 13, 18, 7, 19, 18, 1, 16, 18, 22, 22, 18, 25, 19, 27, 10, 7, 27, 22, 31, 27, 25, 37, 18, 28, 25, 9, 22, 31, 27, 25, 19, 36, 28, 25, 18, 13, 31, 27, 25, 37, 18, 37, 43, 27, 31, 13, 27, 25, 37, 27, 28, 43, 18, 31, 22, 18, 34, 37, 36, 37, 34, 45, 13, 31, 27, 7
Offset: 0

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			a(2) = 7 because 2^4 = 16 and 1+6 = 7.
		

Crossrefs

Cf. A000583, A007953, A055570, A055575 (fixed points), A373914.

Programs

  • Maple
    for i from 0 to 200 do printf(`%d,`,add(j, j=convert(i^4, base, 10))) od;
  • Mathematica
    a[n_Integer]:=Apply[Plus, IntegerDigits[n^4]]; Table[a[n], {n, 0, 100}] (* Vincenzo Librandi, Feb 23 2015 *)
  • PARI
    a(n) = sumdigits(n^4); \\ Seiichi Manyama, Nov 16 2021
  • Sage
    [sum((n^4).digits()) for n in (0..70)] # Bruno Berselli, Feb 23 2015
    

Formula

a(n) = A007953(A000583(n)). - Michel Marcus, Feb 23 2015

Extensions

More terms from James Sellers, Jul 04 2000

A055576 Sum of digits of a(n)^5 is equal to a(n).

Original entry on oeis.org

0, 1, 28, 35, 36, 46
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 28 because 28^5 = 17210368 and 1+7+2+1+0+3+6+8 = 28
		

Crossrefs

Programs

  • Magma
    [n: n in [0..50] | &+Intseq(n^5) eq n ]; // Vincenzo Librandi, Feb 23 2015
  • Mathematica
    Select[Range[0, 60], #==Total[IntegerDigits[#^5]] &] (* Vincenzo Librandi, Feb 23 2015 *)
  • PARI
    lista(nn) = {for (n=0, nn, if (n^5 == sumdigits(n^5)^5, print1(n, ", ")););} \\ Michel Marcus, Feb 23 2015
    

Extensions

Offset changed to 1 by Michel Marcus, Feb 23 2015

A225017 Odd part of digit sum of 5^n divided by maximal possible power of 5.

Original entry on oeis.org

1, 1, 7, 1, 13, 11, 19, 23, 1, 13, 1, 19, 7, 23, 17, 11, 29, 7, 1, 59, 61, 31, 67, 37, 41, 77, 79, 89, 17, 83, 91, 13, 53, 89, 103, 23, 109, 13, 31, 67, 13, 137, 29, 149, 151, 29, 7, 1, 29, 79, 151, 19, 13, 119, 127, 167, 49, 43, 211, 191, 199, 97, 187, 17, 83
Offset: 0

Views

Author

Vladimir Shevelev, Apr 24 2013

Keywords

Comments

Does the sequence contain every prime greater than 5?

Crossrefs

Programs

  • Maple
    a:= proc(n) local m, r; m, r:= 0, 5^n;
          while r>0 do m:= m+irem(r, 10, 'r') od;
          while irem(m, 2, 'r')=0 do m:=r od;
          while irem(m, 5, 'r')=0 do m:=r od; m
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 24 2013
  • Mathematica
    Map[#/(2^IntegerExponent[#,2] 5^IntegerExponent[#,5])&[Total[ IntegerDigits[5^#]]]&,Range[0,99]] (* Peter J. C. Moses, Apr 24 2013 *)
  • PARI
    a(n) = my(x = sumdigits(5^n)); x/5^valuation(x, 5) >> valuation(x, 2); \\ Michel Marcus, Dec 10 2018

Formula

a(n) = A132740(A055566(n)). - Michel Marcus, Dec 10 2018

A055571 Sum of digits of a(n)^5 is greater than or equal to a(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 31, 33, 35, 36, 37, 38, 46
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 2 because 2^5 = 32 and 3+2 = 5>= 2
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,50],Total[IntegerDigits[#^5]]>=#&] (* Harvey P. Dale, Jul 03 2021 *)

A055567 Sum of digits of n^6.

Original entry on oeis.org

0, 1, 10, 18, 19, 19, 27, 28, 19, 18, 1, 28, 45, 37, 37, 27, 37, 37, 18, 37, 10, 36, 37, 46, 36, 28, 46, 45, 37, 37, 18, 46, 37, 54, 37, 46, 45, 46, 37, 45, 19, 28, 45, 37, 46, 45, 64, 46, 36, 37, 19, 54, 55, 37, 54, 46, 55, 54, 55, 37, 27, 37, 46, 36, 64, 55, 45, 55, 64, 45
Offset: 0

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 10 because 2^6 = 64 and 6+4 = 10.
		

Crossrefs

Programs

  • Mathematica
    DigitSum[Range[0, 100]^6] (* Paolo Xausa, Jul 03 2024 *)
  • PARI
    a(n) = sumdigits(n^6); \\ Seiichi Manyama, Nov 16 2021

A374025 a(n) is the largest digit sum of all n-digit fifth powers.

Original entry on oeis.org

1, 5, 9, 27, 27, 36, 45, 46, 52, 63, 72, 80, 89, 90, 99, 104, 108, 119, 126, 143, 137, 152, 157, 162, 175, 180, 182, 189, 198, 208, 209, 216, 225, 234, 236, 250, 253, 270, 270, 284, 286, 288, 297, 310, 315, 323, 324, 334, 341, 346, 351, 364
Offset: 1

Views

Author

Zhining Yang, Jun 25 2024

Keywords

Examples

			a(5) = 27 because 27 is the largest digital sum encountered among all 5-digit fifth powers (16807, 32768, 59049).
		

Crossrefs

Programs

  • Mathematica
    Table[Max@Map[Total@IntegerDigits[#^5] &, Range[Ceiling[10^((n - 1)/5)], Floor[(10^n-1)^(1/5)]]], {n, 40}]
  • Python
    from sympy import integer_nthroot
    def A374025(n): return max(sum(int(d) for d in str(m**5)) for m in range((lambda x:x[0]+(x[1]^1))(integer_nthroot(10**(n-1),5)),1+integer_nthroot(10**n-1,5)[0])) # Chai Wah Wu, Jun 26 2024

Extensions

a(41)-a(49) from Chai Wah Wu, Jun 26 2024
a(50)-a(52) from Chai Wah Wu, Jun 27 2024

A336225 Table read by antidiagonals: T(n, k) = digitsum(n*k) with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 10, 3, 3, 10, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 12 2020

Keywords

Examples

			The table T(n, k) begins
0   0   0   0   0   0   0   0 ...
0   1   2   3   4   5   6   7 ...
0   2   4   6   8   1   3   5 ...
0   3   6   9   3   6   9   3 ...
0   4   8   3   7   2   6  10 ...
0   5   1   6   2   7   3   8 ...
0   6   3   9   6   3   9   6 ...
0   7   5   3  10   8   6  13 ...
...
		

Crossrefs

Cf. A003991, A004092, A004159 (diagonal), A004164 (digitsum of n^3), A004247, A007953, A055565 (digitsum of n^4), A055566 (digitsum of n^5), A055567 (digitsum of n^6).

Programs

  • Mathematica
    T[n_,k_]:=Total[IntegerDigits[n*k]]; Table[T[n-k,k],{n,0,12},{k,0,n}]//Flatten
  • PARI
    T(n, k) = sumdigits(n*k);

Formula

T(n, k) = A007953(A004247(n, k)).
T(n, 1) = T(1, n) = A007953(n).
T(n, 2) = T(2, n) = A004092(n).
T(n, k) = A007953(A003991(n, k)) for n*k > 0. - Michel Marcus, Jul 13 2020.

A328364 a(n) is the smallest number m such that the sum of the digits of m^5 is equal to n^5.

Original entry on oeis.org

0, 1, 47, 13174539
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2019

Keywords

Examples

			a(2) = 47 as 47^5 = 229345007 is the smallest fifth power whose digit sum = 32 = 2^5.
		

Crossrefs

Cf. A000584 (n^5), A055566 (sum of digits of n^5).

Programs

  • PARI
    {a(n) = my(k=0); while(sumdigits(k^5) != n^5, k++); k}
Showing 1-9 of 9 results.