A062688 Smallest triangular number with digit sum n (or 0 if no such number exists).
1, 0, 3, 0, 0, 6, 0, 0, 36, 28, 0, 66, 0, 0, 78, 0, 0, 378, 496, 0, 1596, 0, 0, 8385, 0, 0, 5778, 5995, 0, 8778, 0, 0, 47895, 0, 0, 67896, 58996, 0, 196878, 0, 0, 468996, 0, 0, 887778, 1788886, 0, 4896885, 0, 0, 5897895, 0, 0, 13999986, 15997996, 0, 38997696
Offset: 1
Examples
66 is the smallest triangular number with digit sum 12, so a(12)=66.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..168
Programs
-
Mathematica
(With[{tbl={#,Total[IntegerDigits[#]]}&/@Accumulate[Range[9000]]},Table[SelectFirst[ tbl,#[[2]] ==n&],{n,60}]]/.Missing["NotFound"]->{0,0})[[;;,1]] (* Harvey P. Dale, Aug 21 2024 *)
-
PARI
a(n) = if (vecsearch([2,4,5,7,8], n % 9), return (0)); my(k=1); while (sumdigits(k*(k+1)/2) != n, k++); k*(k+1)/2; \\ Michel Marcus, Dec 12 2021
Comments