A062723 Least common multiple (LCM) of the first n+1 terms of A000792.
1, 1, 2, 6, 12, 12, 36, 36, 36, 108, 108, 108, 324, 324, 324, 972, 972, 972, 2916, 2916, 2916, 8748, 8748, 8748, 26244, 26244, 26244, 78732, 78732, 78732, 236196, 236196, 236196, 708588, 708588, 708588, 2125764, 2125764, 2125764, 6377292, 6377292
Offset: 0
Examples
a(4)=12 because a(4) is the LCM of 1,1,2,3,4 - which is clearly 12.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..400
- Index entries for sequences related to lcm's
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 3).
Programs
-
Haskell
a062723 n = a062723_list !! n a062723_list = scanl1 lcm a000792_list -- Reinhard Zumkeller, Dec 17 2011
-
Mathematica
Module[{nn=50,trms},trms=CoefficientList[Series[(1+x+2x^2+x^4)/(1-3x^3),{x,0,nn}],x];Table[LCM@@Take[trms,n],{n,nn}]] (* or *) LinearRecurrence[{0,0,3},{1,1,2,6,12,12,36},50] (* Harvey P. Dale, Oct 04 2024 *)
-
PARI
a(n)=if(n<0,0,if(n<4,n!,4*3^(n\3)))
Formula
a(n) = 4*3^floor(n/3), n >= 3. - Vladeta Jovovic, Jul 18 2001
G.f.: (1+x+2*x^2+3*x^3+9*x^4+6*x^5+18*x^6)/(1-3*x^3).
Extensions
Formula and correction from Vladeta Jovovic, Jul 18 2001
More terms from Jason Earls, Jul 21 2001
Comments