A062728 Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.
0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
Offset: 0
Examples
The spiral begins: 15 / \ 16 14 / \ 17 3 13 / / \ \ 18 4 2 12 / / \ \ 19 5 0---1 11 / / \ 20 6---7---8---9--10
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(9*n+7)/2); # G. C. Greubel, May 24 2019
-
Magma
[n*(9*n+7)/2: n in [0..50]]; // G. C. Greubel, May 24 2019
-
Mathematica
Table[n*(9*n+7)/2, {n,0,50}] (* G. C. Greubel, May 24 2019 *) LinearRecurrence[{3,-3,1},{0,8,25},50] (* Harvey P. Dale, Sep 06 2019 *)
-
PARI
a(n)=n*(9*n+7)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(9*n+7)/2 for n in (0..50)] # G. C. Greubel, May 24 2019
Formula
a(n) = n*(9*n+7)/2.
a(n) = 9*n + a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Bruno Berselli, Jan 13 2011: (Start)
G.f.: x*(8 + x)/(1 - x)^3.
a(n) = Sum_{i=0..n-1} A017257(i) for n > 0. (End)
a(n) = A218470(9n+7). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(16 + 9*x)*exp(x)/2. - G. C. Greubel, May 24 2019
Extensions
New name from Bruno Berselli (with the original formula), Jan 13 2011
Comments