A062730 Rows of Pascal's triangle which contain 3 terms in arithmetic progression.
7, 12, 14, 19, 21, 23, 32, 34, 45, 47, 60, 62, 77, 79, 96, 98, 117, 119, 140, 142, 165, 167, 192, 194, 221, 223, 252, 254, 285, 287, 320, 322, 357, 359, 396, 398, 437, 439, 480, 482, 525, 527, 572, 574, 621, 623, 672, 674, 725, 727, 780, 782, 837, 839
Offset: 1
Examples
12 is in the list since the 12th row of Pascal's triangle starts 1 12 (66) 220 (495) 792 (924) and 66 495 924 are in arithmetic progression.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..100
Programs
-
Haskell
-- import Data.List (intersect) a062730 n = a062730_list !! (n-1) a062730_list = filter f $ [3..] where f x = not $ all null $ zipWith (\us (v:vs) -> map (v -) us `intersect` map (subtract v) vs) (tail $ init $ inits bns) (tail $ init $ tails bns) where bns = a034868_row x -- Reinhard Zumkeller, Jun 10 2013
-
Mathematica
kmax = 30; row[n_] := Table[Binomial[n, k], {k, 0, Floor[n/2]}]; Reap[Do[r = row[n]; If[ (r /. {_, a_, _, b_, _, c_, _} /; b - a == c - b -> {}) == {}, Print[n]; Sow[n]], {n, Union[{19}, Range[2, kmax]^2 - 2, Range[2, kmax]^2 - 4]}]][[2, 1]] (* Jean-François Alcover, Jul 11 2012, after T. D. Noe *)
Formula
G.f.: (-5x^8+3x^7+7x^6-3x^5+5x^4-5x^3-12x^2+5x+7)/[(1-x)(1-x^2)^2] (conjectured). - Ralf Stephan, May 08 2004
a(n)=(n^2+8*n+8)/4 for n>4 and even; a(n)=(n^2+10*n+9)/4 for n>4 and odd (conjectured). - Colin Barker, Aug 29 2013
Extensions
More terms from Naohiro Nomoto, Oct 01 2001
Offset corrected by Reinhard Zumkeller, Jun 10 2013
Comments