cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062738 Number of connected labeled relations.

Original entry on oeis.org

1, 2, 12, 432, 61344, 32866560, 68307743232, 561981464819712, 18437720675374485504, 2417519433343618432696320, 1267602236528793479228867346432, 2658428102191640176274135259655176192, 22300681394917309655766001890404571062206464
Offset: 0

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Comments

a(n) is the number of binary relations R on {1, 2, ..., n} such that the reflexive, symmetric, and transitive closure of R is the trivial relation.

Crossrefs

Cf. A003027.

Programs

  • Maple
    a:= n-> n!*coeff(series(1+log(add(2^(i^2)*x^i/i!, i=0..n)), x, n+1), x, n):
    seq(a(n), n=0..30); # Alois P. Heinz, Feb 16 2011
  • Mathematica
    nn = 20; a = Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Log[a] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Oct 17 2011 *)
  • PARI
    v=Vec(1+log(sum(n=0,10,2^(n^2)*x^n/n!)));for(i=1,#v,v[i]*=(i-1)!);v \\ Charles R Greathouse IV, Feb 14 2011

Formula

E.g.f.: 1+log( Sum_{n >= 0} 2^(n^2)*x^n/n! ).