A062822 Sum of divisors of the squarefree numbers: sigma(A005117(n)).
1, 3, 4, 6, 12, 8, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 42, 30, 72, 32, 48, 54, 48, 38, 60, 56, 42, 96, 44, 72, 48, 72, 54, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 90, 112, 128, 144, 120, 98, 102, 216, 104, 192
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a062822 1 = 1 a062822 n = product $ map (+ 1) $ a265668_row n -- Reinhard Zumkeller, Dec 13 2015
-
Mathematica
DivisorSigma[1,#]&/@Select[Range[150],SquareFreeQ] (* Harvey P. Dale, May 18 2014 *)
-
PARI
j=[]; for(n=1,200, if(issquarefree(n),j=concat(j, sigma(n)))); j
-
Python
from math import isqrt from sympy import mobius, divisor_sigma def A062822(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return divisor_sigma(m) # Chai Wah Wu, Aug 12 2024
Formula
From Amiram Eldar, Nov 21 2022: (Start)