cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062822 Sum of divisors of the squarefree numbers: sigma(A005117(n)).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 42, 30, 72, 32, 48, 54, 48, 38, 60, 56, 42, 96, 44, 72, 48, 72, 54, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 90, 112, 128, 144, 120, 98, 102, 216, 104, 192
Offset: 1

Views

Author

Jason Earls, Jul 20 2001

Keywords

Crossrefs

Programs

  • Haskell
    a062822 1 = 1
    a062822 n = product $ map (+ 1) $ a265668_row n
    -- Reinhard Zumkeller, Dec 13 2015
    
  • Mathematica
    DivisorSigma[1,#]&/@Select[Range[150],SquareFreeQ] (* Harvey P. Dale, May 18 2014 *)
  • PARI
    j=[]; for(n=1,200, if(issquarefree(n),j=concat(j, sigma(n)))); j
    
  • Python
    from math import isqrt
    from sympy import mobius, divisor_sigma
    def A062822(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_sigma(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = Product_{k=1..A001221(n)} (A265668(n,k) + 1). - Reinhard Zumkeller, Dec 13 2015
From Amiram Eldar, Nov 21 2022: (Start)
a(n) = A000203(A005117(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/(72*zeta(3)) = A152649 / A002117 = 1.1254908... . (End)