cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A265668 Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 5, 2, 3, 7, 2, 5, 11, 13, 2, 7, 3, 5, 17, 19, 3, 7, 2, 11, 23, 2, 13, 29, 2, 3, 5, 31, 3, 11, 2, 17, 5, 7, 37, 2, 19, 3, 13, 41, 2, 3, 7, 43, 2, 23, 47, 3, 17, 53, 5, 11, 3, 19, 2, 29, 59, 61, 2, 31, 5, 13, 2, 3, 11, 67, 3, 23, 2, 5, 7, 71, 73, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2015

Keywords

Comments

For n > 1: A072047(n) = length of row n;
T(n,1) = A073481(n); T(n,A001221(n)) = A073482(n);
for n > 1: A111060(n) = sum of row n;
A005117(n) = product of row n.

Examples

			.   n | T(n,*)  A5117(n)    n | T(n,*)  A5117(n)    n | T(n,*)   A5117(n)
. ----+---------+------   ----+---------+------   ----+----------+------
.   1 | [1]     |  1       21 | [3,11]  | 33       41 | [2,3,11] | 66
.   2 | [2]     |  2       22 | [2,17]  | 34       42 | [67]     | 67
.   3 | [3]     |  3       23 | [5,7]   | 35       43 | [3,23]   | 69
.   4 | [5]     |  5       24 | [37]    | 37       44 | [2,5,7]  | 70
.   5 | [2,3]   |  6       25 | [2,19]  | 38       45 | [71]     | 71
.   6 | [7]     |  7       26 | [3,13]  | 39       46 | [73]     | 73
.   7 | [2,5]   | 10       27 | [41]    | 41       47 | [2,37]   | 74
.   8 | [11]    | 11       28 | [2,3,7] | 42       48 | [7,11]   | 77
.   9 | [13]    | 13       29 | [43]    | 43       49 | [2,3,13] | 78
.  10 | [2,7]   | 14       30 | [2,23]  | 46       50 | [79]     | 79
.  11 | [3,5]   | 15       31 | [47]    | 47       51 | [2,41]   | 82
.  12 | [17]    | 17       32 | [3,17]  | 51       52 | [83]     | 83
.  13 | [19]    | 19       33 | [53]    | 53       53 | [5,17]   | 85
.  14 | [3,7]   | 21       34 | [5,11]  | 55       54 | [2,43]   | 86
.  15 | [2,11]  | 22       35 | [3,19]  | 57       55 | [3,29]   | 87
.  16 | [23]    | 23       36 | [2,29]  | 58       56 | [89]     | 89
.  17 | [2,13]  | 26       37 | [59]    | 59       57 | [7,13]   | 91
.  18 | [29]    | 29       38 | [61]    | 61       58 | [3,31]   | 93
.  19 | [2,3,5] | 30       39 | [2,31]  | 62       59 | [2,47]   | 94
.  20 | [31]    | 31       40 | [5,13]  | 65       60 | [5,19]   | 95  .
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    import Data.Maybe (mapMaybe)
    a265668 n k = a265668_tabf !! (n-1) !! (k-1)
    a265668_row n = a265668_tabf !! (n-1)
    a265668_tabf = [1] : mapMaybe f [2..] where
       f x = if all (== 1) es then Just ps else Nothing
             where (ps, es) = unzip $ factorise x
  • Mathematica
    FactorInteger[#][[All,1]]&/@Select[Range[100],SquareFreeQ]//Flatten (* Harvey P. Dale, Apr 27 2018 *)

A366439 The sum of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 15, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 60, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 72, 48, 72, 54, 120, 72, 120, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 180, 90
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366439_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e&1 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A366439_list = list(islice(A366439_gen(),30)) # Chai Wah Wu, Oct 11 2023

Formula

a(n) = A000203(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .

A072048 Number of divisors of the squarefree numbers: tau(A005117(n)).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 8, 2, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 8, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 2, 8, 4, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

Also the number of cubefree numbers with the same squarefree kernel as the n-th squarefree number, see A073245.

Crossrefs

Programs

  • Haskell
    a072048 = (2 ^) . a072047  -- Reinhard Zumkeller, Dec 13 2015
    
  • Maple
    A072048:=n->`if`(numtheory[issqrfree](n) = true, numtheory[tau](n), NULL); seq(A072048(k), k=1..100); # Wesley Ivan Hurt, Oct 13 2013
  • Mathematica
    DivisorSigma[0, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 29 2022 *)
  • Python
    from math import isqrt
    from sympy import mobius, divisor_count
    def A072048(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_count(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A000005(A005117(n)).
a(n) = 2^A072047(n) = 2^A001221(A005117(n)).
Sum_{k=1..n} a(k) ~ A * n * log(n) + B * n + O(n^(1/2+eps)), where A = A065473, B = A * ((2*gamma-1) + 6 * Sum_{p prime} (p-1)*log(p)/(p^2*(p+2)) = 0.236184..., and gamma = A001620 (Gordon and Rogers, 1964). - Amiram Eldar, Oct 29 2022

A366440 The sum of divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 13, 18, 12, 28, 14, 24, 24, 18, 39, 20, 42, 32, 36, 24, 31, 42, 56, 30, 72, 32, 48, 54, 48, 91, 38, 60, 56, 42, 96, 44, 84, 78, 72, 48, 57, 93, 72, 98, 54, 72, 80, 90, 60, 168, 62, 96, 104, 84, 144, 68, 126, 96, 144, 72, 74, 114, 124, 140
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), iscubefree = 1); for(i = 1, #f~, if(f[i, 2] > 2, iscubefree = 0; break)); if(iscubefree, print1(sigma(f), ", ")));
    
  • Python
    from sympy import mobius, integer_nthroot, divisor_sigma
    def A366440(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_sigma(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000203(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15*zeta(3)/(2*Pi^2) = A082020 * A002117 / 2 = 0.913453711751... .
The asymptotic mean of the abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = 15/Pi^2 = 1.519817... (A082020).

A366537 The sum of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104, 100, 96
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_sigma
    from sympy import mobius, integer_nthroot
    def A366537(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_sigma(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034448(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)^2 * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 1/p^4 - 1/p^5) = 1.665430860774244601005... .
The asymptotic mean of the unitary abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = c / zeta(3) = 1.38548421160152785073... .

A369889 The sum of squarefree divisors of the cubefree numbers.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 4, 18, 12, 12, 14, 24, 24, 18, 12, 20, 18, 32, 36, 24, 6, 42, 24, 30, 72, 32, 48, 54, 48, 12, 38, 60, 56, 42, 96, 44, 36, 24, 72, 48, 8, 18, 72, 42, 54, 72, 80, 90, 60, 72, 62, 96, 32, 84, 144, 68, 54, 96, 144, 72, 74, 114, 24, 60, 96, 168
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2024

Keywords

Comments

The number of squarefree divisors of the n-th cubefree number is A366536(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p + 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; cubefreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; s /@ Select[Range[100], cubefreeQ]
    (* or *)
    f[p_, e_] := If[e > 2, 0, p + 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    lista(kmax) = {my(f, s, p, e); for(k = 1, kmax, f = factor(k); s = prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e < 3, p + 1, 0)); if(s > 0, print1(s, ", ")));}
    
  • Python
    from math import prod
    from sympy import mobius, integer_nthroot, primefactors
    def A369889(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p+1 for p in primefactors(m)) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A048250(A004709(n)).
Sum_{j=1..n} a(j) ~ c * n^2, where c = zeta(3)^2/(2*zeta(5)) = 0.6967413068... .
In general, the formula holds for the sum of squarefree divisors of the k-free numbers with c = zeta(k)^2/(2*zeta(2*k-1))..., for k >= 2.

A073245 Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.

Original entry on oeis.org

1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2002

Keywords

Examples

			14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
		

Crossrefs

Programs

  • Mathematica
    Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, divisor_sigma
    def A073245(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023

A366442 The sum of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 6, 8, 12, 14, 18, 20, 24, 31, 30, 32, 48, 38, 42, 44, 48, 57, 54, 72, 60, 62, 84, 68, 72, 74, 96, 80, 84, 108, 90, 112, 120, 98, 102, 104, 108, 110, 114, 144, 144, 133, 156, 128, 132, 160, 138, 140, 168, 180, 150, 152, 192, 158, 192, 164, 168, 183, 174, 248
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = sigma((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_sigma
    def A366442(n): return divisor_sigma((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000203(A007310(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2) = 1.644934... (A013661).
The asymptotic mean of the abundancy index of the 5-rough numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007310(k) = Pi^2/9 = 1.0966227... (A100044).
In general, the asymptotic mean of the abundancy index of the prime(k)-rough numbers is zeta(2) * Product_{i=1..k-1} (1 - 1/prime(i)^2).

A291109 Numbers that are not the sum of the squarefree divisors of some natural number.

Original entry on oeis.org

2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Impossible values for A048250 (numbers k in increasing order such that A048250(m) = k has no solution).
Numbers that are not of the form Product (p_i + 1), p is a prime, so all odd numbers (except 1 and 3) are in this sequence.
Also numbers that are not the sum of the divisors of some squarefree number.

Crossrefs

Programs

  • Maple
    sort(convert({$1..1000} minus map(numtheory:-sigma, select(numtheory:-issqrfree, {$1..1000})),list)); # Robert Israel, Jun 26 2018
  • Mathematica
    TakeWhile[Complement[Range@ #, Union@ Table[Total@ Select[Divisors@ n, SquareFreeQ], {n, 2 #}]], Function[k, k <= #]] &@ 111
Showing 1-9 of 9 results.