Original entry on oeis.org
0, 1, 2, 4, 4, 7, 6, 10, 11, 13, 10, 17, 12, 19, 20, 23, 16, 26, 18, 29, 29, 31, 22, 37, 33, 37, 38, 42, 28, 47, 30, 48, 47, 49, 49, 58, 36, 55, 56, 63, 40, 66, 42, 67, 68, 67, 46, 78, 66, 77, 74, 80, 52, 85, 78, 89, 83
Offset: 1
Ron A. Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001
a(4)=4 because there are 7 integer non-products for the 4 X 4 multiplication table (5 7 10 11 13 14 15), which is 4 more than the 3 non-products for the 3 X 3 multiplication table (5 7 8).
A062856
In the square multiplication table of size A062857(n), the smallest number which appears n times.
Original entry on oeis.org
1, 2, 4, 6, 12, 12, 36, 60, 60, 60, 120, 120, 120, 120, 360, 360, 360, 360, 360, 360, 840, 840, 840, 840, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 10080, 10080
Offset: 1
Ron Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001
a(7)=36 because 36 is the first product to appear in the m X m multiplication tables 7 times as m increases from 1 to infinity.
-
b[1] = {1, 1}; b[n_] := b[n] = For[m = b[n-1][[1]], True, m++, T = Table[i j, {i, m}, {j, m}] // Flatten // Tally; sel = SelectFirst[T, #[[2]] >= n&]; If[sel != {}, Print[n, " ", m, " ", sel[[1]]]; Return[{m, sel[[1]]}] ]];
a[n_] := b[n][[2]];
Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 25 2019 *)
-
from itertools import count
from collections import Counter
def A062856(n):
if n == 1: return 1
c = Counter()
for m in count(1):
for i in range(1,m):
ij = i*m
c[ij] += 2
if c[ij]>=n:
return ij
c[m*m] = 1 # Chai Wah Wu, Oct 16 2023
A062857
Size of smallest square multiplication table which contains some number at least n times.
Original entry on oeis.org
1, 2, 4, 6, 12, 12, 18, 20, 30, 30, 40, 40, 60, 60, 72, 72, 90, 90, 120, 120, 140, 140, 168, 168, 180, 180, 210, 210, 252, 252, 280, 280, 315, 315, 336, 336, 360, 360, 420, 420, 504, 504, 560, 560, 630, 630, 672, 672, 720, 720, 792, 792, 840, 840, 924, 924, 990
Offset: 1
Ron Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001
a(7)=18 because the 18 X 18 multiplication table is the smallest to contain a product of frequency 7 (namely the number A062856(7)=36).
The least such number is
A062856(n).
-
N = 1000; % to get all terms with a(n) <= N
M = sparse(1,N^2);
A(1) = 1;
imax = 1;
for k = 2:N
M(k*[1:k-1]) = M(k*[1:k-1])+2;
M(k^2) = 1;
newimax = max(M);
A(imax+1:newimax) = k;
imax = newimax;
end
A % Robert Israel, Jan 30 2017
-
a[1] = 1; a[n_] := a[n] = For[m = a[n-1], True, m++, T = Table[i j, {i, m}, {j, m}] // Flatten // Tally; sel = SelectFirst[T, #[[2]] >= n&]; If[sel != {}, Print[n, " ", m, " ", sel[[1]]]; Return[m]]];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 25 2019 *)
-
from itertools import count
from collections import Counter
def A062857(n):
if n == 1: return 1
c = Counter()
for m in count(1):
for i in range(1,m):
ij = i*m
c[ij] += 2
if c[ij]>=n:
return m
c[m*m] = 1 # Chai Wah Wu, Oct 16 2023
A062859
Size of smallest triangular multiplication table which contains some number n times.
Original entry on oeis.org
1, 4, 12, 18, 30, 40, 60, 72, 90, 120, 140, 168, 180, 210, 252, 280, 315, 336, 360, 420, 504, 560, 630, 672, 720, 792, 840, 924, 990, 1008, 1155, 1232, 1260, 1320, 1386, 1540, 1584, 1680, 1848, 1980, 2016, 2310, 2376, 2520, 2640, 2772, 2970, 3024, 3080
Offset: 1
Ron A. Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001
a(4)=18 because the size-18 triangular multiplication table is the smallest to contain a particular number 4 times (namely the number A062858(4)=36).
The least such number is
A062858(n).
-
from itertools import count
from collections import Counter
def A062859(n):
c = Counter()
for m in count(1):
for i in range(1,m+1):
ij = i*m
c[ij] += 1
if c[ij]>=n:
return m # Chai Wah Wu, Oct 16 2023
A062858
In the triangular multiplication table of size A062859(n), the smallest number which appears n times.
Original entry on oeis.org
1, 4, 12, 36, 60, 120, 120, 360, 360, 360, 840, 840, 2520, 2520, 2520, 2520, 2520, 5040, 5040, 5040, 5040, 5040, 5040, 10080, 10080, 27720, 27720, 27720, 27720, 55440, 55440, 55440, 55440, 55440, 55440, 55440, 55440, 55440, 55440, 55440
Offset: 1
Ron Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001
a(4)=36 because 36 is the smallest number to appear 4 times in the triangular multiplication table of size A062859(4)=18.
-
from itertools import count
from collections import Counter
def A062858(n):
c = Counter()
for m in count(1):
for i in range(1,m+1):
ij = i*m
c[ij] += 1
if c[ij]>=n:
return ij # Chai Wah Wu, Oct 16 2023
A373716
a(n) is the number of distinct products i*j minus the number of distinct sums i+j with 1 <= i, j <= n.
Original entry on oeis.org
0, 0, 1, 2, 5, 7, 12, 15, 19, 23, 32, 36, 47, 53, 60, 66, 81, 88, 105, 113, 123, 133, 154, 162, 176, 188, 201, 212, 239, 249, 278, 291, 307, 323, 341, 352, 387, 405, 424, 438, 477, 492, 533, 551, 570, 592, 637, 652, 681, 701, 726, 747, 798, 818, 847, 867, 895
Offset: 1
a(5) = 5 because:
Products: Sums:
* | 1 | 2 | 3 | 4 | 5 + | 1 | 2 | 3 | 4 | 5
------------------------- -----------------------
1 | 1 | 2 | 3 | 4 | 5 1 | 2 | 3 | 4 | 5 | 6
2 | 2 | 4 | 6 | 8 | 10 2 | 3 | 4 | 5 | 6 | 7
3 | 3 | 6 | 9 | 12 | 15 3 | 4 | 5 | 6 | 7 | 8
4 | 4 | 8 | 12 | 16 | 20 4 | 5 | 6 | 7 | 8 | 9
5 | 5 | 10 | 15 | 20 | 25 5 | 6 | 7 | 8 | 9 | 10
The number of distinct products [1,2,3,4,5,6,8,9,10,12,15,16,20,25] is 14.
The number of distinct sums [2,3,4,5,6,7,8,9,10] is 9.
So a(5) = 14 - 9 = 5.
-
a(n) = #setbinop((x, y)->x*y, vector(n, i, i)) - 2*n + 1; \\ Michel Marcus, Jun 23 2024
-
A027424 = lambda n: len({i*j for i in range(1, n+1) for j in range(1, i+1)})
a = lambda n: A027424(n)-((n<<1)-1)
print([a(n) for n in range(1, 58)])
Showing 1-6 of 6 results.
Comments