cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062568 a(n) is the smallest n-digit strong pseudoprime (in base 2).

Original entry on oeis.org

2047, 15841, 104653, 1004653, 10323769, 100463443, 1002261781, 10000321321, 100004790097, 1000002977551, 10000130243671, 100002236680837, 1000003918690669, 10000008250001701, 100000150553089531, 1000000274500018837, 10000003599249373469
Offset: 4

Views

Author

Shyam Sunder Gupta, Feb 13 2002

Keywords

Examples

			a(1)=2047 because 2047 is the smallest 4-digit strong pseudoprime to base 2.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009
a(17)-a(20) from Charles R Greathouse IV, Mar 14 2011

A067845 Largest n-digit pseudoprime (to base 2).

Original entry on oeis.org

645, 8911, 93961, 997633, 9995671, 99971821, 999828727, 9999109081, 99983971501, 999986341201, 9999946514845, 99999856404001, 999994510007533, 9999999191658001, 99999984319096601, 999999995115616561, 9999999995077192591
Offset: 3

Views

Author

Shyam Sunder Gupta, Feb 14 2002

Keywords

Examples

			a(2)=8911, so largest pseudoprime (base 2) of 4 digits is 8911.
		

Crossrefs

Extensions

More terms from Farideh Firoozbakht, Jan 11 2007
a(17)-a(19) from Amiram Eldar, Jun 30 2019

A068216 a(n) is the smallest n-digit pseudoprime (to base 2).

Original entry on oeis.org

341, 1105, 10261, 101101, 1004653, 10004681, 100017223, 1001152801, 10000321321, 100004790097, 1000001376901, 10000130243671, 100000105970311, 1000000191735161, 10000006286491369, 100000010102756401, 1000000114865704261, 10000000494514450733
Offset: 3

Views

Author

Keywords

Crossrefs

Extensions

One more term from Farideh Firoozbakht, Jan 10 2007
More terms from Jens Kruse Andersen, May 11 2008
Offset corrected by Arkadiusz Wesolowski, Dec 14 2011

A048123 Smallest n-digit Carmichael numbers.

Original entry on oeis.org

561, 1105, 10585, 101101, 1024651, 10024561, 100427041, 1001152801, 10017089857, 100023777217, 1000151515441, 10000879761601, 100000782192961, 1000040508690301, 10000092861302401, 100001371359120001, 1000004296444433281, 10000011591390633121
Offset: 3

Views

Author

Shyam Sunder Gupta, Feb 17 2002

Keywords

Examples

			a(4)=1105 because 1105 is the smallest 4-digit Carmichael number. [corrected by _Jon E. Schoenfield_, Jan 28 2014]
		

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; f[n_] := Block[{k = 10^(n - 1) + 1}, While[! CarmichaelNbrQ@ k, k += 2]; k]; Do[ Print[{n, f[n] // Timing}], {n, 3, 18}]

Extensions

a(17)-a(20) from Amiram Eldar, Jun 29 2019

A063400 Largest n-digit Carmichael numbers.

Original entry on oeis.org

561, 8911, 75361, 997633, 9890881, 99861985, 993905641, 9999109081, 99976607641, 999629786233, 9999501351841, 99994742993377, 999922265173441, 9999924433632001, 99999201310035841, 999996386511276505, 9999998594193164041
Offset: 3

Views

Author

Shyam Sunder Gupta, Feb 17 2002

Keywords

Examples

			a(4)=8911 because 8911 is the largest 4-digit Carmichael number. [corrected by _Jon E. Schoenfield_, Jan 28 2014]
		

Crossrefs

Programs

  • Mathematica
    CarmichaelNbrQ[n_] := !PrimeQ[n] && Mod[n, CarmichaelLambda[n]] == 1; f[n_] := f[n] = Block[{k = 10^n - 1}, While[!CarmichaelNbrQ[k], k -= 2]; k]; Reap[Do[Print[{n, f[n]}]; Sow[f[n]], {n, 3, 10}]][[2, 1]] (* Jean-François Alcover, Jan 28 2014, after Shyam Sunder Gupta *)

Extensions

a(17)-a(19) from Amiram Eldar, Jun 29 2019
Showing 1-5 of 5 results.