cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062890 Number of quadrilaterals that can be formed with perimeter n. In other words, number of partitions of n into four parts such that the sum of any three is more than the fourth.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 12, 16, 18, 23, 24, 31, 33, 41, 43, 53, 55, 67, 69, 83, 86, 102, 104, 123, 126, 147, 150, 174, 177, 204, 207, 237, 241, 274, 277, 314, 318, 358, 362, 406, 410, 458, 462, 514, 519, 575, 579, 640, 645, 710
Offset: 0

Views

Author

Amarnath Murthy, Jun 29 2001

Keywords

Comments

Partition sets of n into four parts (sides) such that the sum of any three is more than the fourth do not uniquely define a quadrilateral, even if it is further constrained to be cyclic. This is because the order of adjacent sides is important. E.g. the partition set [1,1,2,2] for a perimeter n=6 can be reordered to generate two non-congruent cyclic quadrilaterals, [1,2,1,2] and [1,1,2,2], where the first is a rectangle and the second a kite. - Frank M Jackson, Jun 29 2012

Examples

			a(7) = 2 as the two partitions are (1,2,2,2), (1,1,2,3) and in each sum of any three is more than the fourth.
		

Crossrefs

Number of k-gons that can be formed with perimeter n: A005044 (k=3), this sequence (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Mathematica
    CoefficientList[Series[x^4*(1+x+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), {x, 0, 60}], x] (* Frank M Jackson, Jun 09 2017 *)

Formula

G.f.: x^4*(1+x+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
a(2*n+6) = A026810(2*n+6) - A000601(n), a(2*n+7) = A026810(2*n+7) - A000601(n) for n >= 0. - Seiichi Manyama, Jun 08 2017
From Wesley Ivan Hurt, Jan 01 2021: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-8) + a(n-9) - a(n-10) + a(n-11) + a(n-12) - a(n-13).
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign(floor((i+j+k)/(n-i-j-k+1))). (End)

Extensions

More terms from Vladeta Jovovic and Dean Hickerson, Jul 01 2001