cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063066 Numbers expressible as (a^2-1)(b^2-1).

Original entry on oeis.org

9, 24, 45, 64, 72, 105, 120, 144, 189, 192, 225, 240, 280, 297, 360, 384, 429, 504, 525, 576, 585, 640, 672, 720, 765, 792, 840, 864, 945, 960, 969, 1080, 1144, 1152, 1197, 1200, 1225, 1320, 1344, 1449, 1485, 1512, 1560, 1584, 1680, 1725, 1792, 1800, 1872
Offset: 1

Views

Author

Henry Bottomley, Jul 08 2001

Keywords

Examples

			45 is on the list because 45=(2^2-1)(4^2-1)
		

Crossrefs

Programs

  • Mathematica
    With[{nn=50},Take[(#[[1]]^2-1)(#[[2]]^2-1)&/@Tuples[Range[2,nn],2]//Union,nn]] (* Harvey P. Dale, May 29 2017 *)

A063067 Numbers expressible as (a^2-1)(b^2-1) in at least 2 distinct ways (b>=a>1).

Original entry on oeis.org

360, 504, 2304, 2520, 2880, 3465, 5040, 5400, 7920, 9360, 12285, 12600, 12672, 13440, 14400, 17325, 20160, 23040, 27720, 28224, 29400, 30600, 32760, 35640, 38080, 40320, 42840, 47880, 48384, 49920, 51480, 57960, 60480, 63360, 72072
Offset: 1

Views

Author

Henry Bottomley, Jul 08 2001

Keywords

Examples

			360 is on the list since 360 = (2^2-1)(11^2-1) = (4^2-1)(5^2-1).
		

Crossrefs

A057535 Numbers expressible as (a^2 - 1)*(b^2 - 1) in 5 distinct ways.

Original entry on oeis.org

588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
Offset: 1

Views

Author

K. S. Brown (ksbrown(AT)seanet.com), Fred W. Helenius (fredh(AT)ix.netcom.com), Dean Hickerson, Randall L Rathbun

Keywords

Comments

The next term (if it exists) is greater than 2^70.

Crossrefs

Cf. A134856, A134857, A134858 (identical?).

Programs

  • PARI
    { f(a,b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6,x,[0,0]); clear=ans; { g(a) = b=divisors(a*a-1); l=length(b); b=b+vector(l,x,a); for(x=1,l/2,c=4*a*b[x]*(a+1)*(a-1)*(b[x]+1)*(b[x]-1)*(a*b[x]-1)/((b[x]-a)*(b[x]-a));
    d=floor(sqrt(sqrt(c))); count=1; for( y=2,d, if (c%(y*y-1)==0,e=ceil(sqrt(c/(y*y-1))); if (f(y,e)==c,ans[count]=[y,e]; count=count+1,),); ); if ( count>5,print("g:",a," ",c," ",ans); ans=clear,); ); } { find()= for(n=560,10001,print(n); g(n)); }
    Store program as text file, load gp, \r textfilename and then run function find() to search for a 7th entry.
    
  • PARI
    { f(a,b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6,x,[0,0])

A134857 Numbers that can be written as (a^2-1)(b^2-1) in four or more distinct ways.

Original entry on oeis.org

241920, 1048320, 10200960, 25724160, 37255680, 93139200, 123963840, 245044800, 588107520, 819786240, 1407893760, 1871251200, 3758169600, 5886558720, 8553283200, 10783342080, 13470367680, 19769460480, 30791819520, 40446806400
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856. Contains A134858 as a subsequence.

Examples

			241920 = (4^2-1)(127^2-1) = (7^2-1)(71^2-1) = (9^2-1)(55^2-1) = (17^2-1)(29^2-1).
		

Crossrefs

A134856 Numbers that can be written as (a^2-1)(b^2-1) in three or more distinct ways.

Original entry on oeis.org

2880, 27720, 40320, 49920, 63360, 98280, 241920, 282744, 491400, 547200, 604800, 950400, 970200, 1048320, 1370880, 1614600, 1774080, 2489760, 2608320, 2882880, 2923200, 3931200, 4817400, 6126120, 7338240, 7673400, 8426880, 10200960
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Contains A134857 and A134858 as subsequences.

Examples

			2880 = (2^2-1)(31^2-1) = (3^2-1)(19^2-1) = (5^2-1)(11^2-1).
		

Crossrefs

A134858 Numbers that can be written as (a^2 - 1)(b^2 - 1) in five or more distinct ways.

Original entry on oeis.org

588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856 and A134857.
Depending on the interpretation of A057535, this is either the same or a supersequence of A057535. [R. J. Mathar, Oct 16 2009]
The next term (if it exists) is greater than 2^70.

Examples

			588107520 = (13^2 - 1)(1871^2 - 1) = (17^2 - 1)(1429^2 - 1) = (55^2 - 1)(441^2 - 1) = (79^2 - 1)(307^2 - 1) = (129^2 - 1)(188^2 - 1).
		

Crossrefs

Showing 1-6 of 6 results.