cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Herman Beeksma

Herman Beeksma's wiki page.

Herman Beeksma has authored 8 sequences.

A212875 Primonacci numbers: composite numbers that appear in the Fibonacci-like sequence generated by their own prime factors.

Original entry on oeis.org

4, 9, 12, 25, 27, 169, 1102, 7921, 22287, 54289, 103823, 777627, 876897, 2550409, 20854593, 34652571, 144237401, 144342653, 167901581, 267911895, 792504416, 821223649, 1103528482, 2040412557, 2852002829, 3493254541, 6033671841, 15658859018, 116085000401
Offset: 1

Author

Herman Beeksma, May 29 2012

Keywords

Comments

Given n, form a sequence that starts with the k prime factors of n in ascending order. After that, each term is the sum of the preceding k terms. If n eventually appears in the sequence, it is a primonacci number. Primes possess this property trivially and are therefore excluded.
Similar to A007629 (repfigit or Keith numbers), but base-independent. If n is in A005478 (Fibonacci primes), then n^2 is a primonacci number.
The only entries that are semiprimes (A001358) are the squares of A005478. - Robert Israel, Mar 08 2016

Examples

			Fibonacci-like sequences for selected values of n:
n=12: 2, 2, 3, 7, 12, ...
n=25: 5, 5, 10, 15, 25, ...
n=1102: 2, 19, 29, 50, 98, 177, 325, 600, 1102, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,j,k,n,t,v; v:=array(1..h);
    for n from 2 to q do if not isprime(n) then b:=ifactors(n)[2]; a:=[];
    for k from 1 to nops(b) do for j from 1 to b[k][2] do a:=[op(a),b[k][1]]; od; od; a:=sort([op(a)]);
    b:=nops(a);  for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]Paolo P. Lava, Mar 08 2016
  • Mathematica
    PrimonacciQ[n_]:=Module[{k,seq},
      seq=FactorInteger[n];
      seq=Map[Table[#[[1]],{#[[2]]}]&, seq];
      seq=Flatten[seq];
      k=Length[seq];
      If[k==1,Return[False]];
      seq=Append[seq,Apply[Plus,seq]];
      While[seq[[-1]]Michael De Vlieger, Mar 08 2016 *)
  • Python
    from sympy import isprime, factorint
    from itertools import chain
    A212875_list = []
    for n in range(2,10**6):
        if not isprime(n):
            x = sorted(chain.from_iterable([p]*e for p,e in factorint(n).items()))
            y = sum(x)
            while y < n:
                x, y = x[1:]+[y], 2*y-x[0]
            if y == n:
                A212875_list.append(n) # Chai Wah Wu, Sep 12 2014

A181061 a(n) is the smallest positive number such that the decimal digits of n*a(n) are all 0, 1 or 2.

Original entry on oeis.org

1, 1, 1, 4, 3, 2, 2, 3, 14, 1358, 1, 1, 1, 17, 8, 8, 7, 6, 679, 58, 1, 1, 1, 44, 5, 4, 47, 786, 4, 38, 4, 71, 35, 34, 3, 6, 617, 3, 29, 259, 3, 271, 5, 47, 5, 2716, 22, 26, 25, 229, 2, 2, 231, 4, 393, 2, 2, 193, 19, 19, 2, 2, 181, 194, 33, 34, 17, 3, 15, 29, 3, 31, 1696, 14, 3, 16, 145
Offset: 0

Author

Herman Beeksma, Oct 01 2010

Keywords

Comments

Records occur for n: 1, 3, 8, 9, 45, 89, 99, 495, 998, ..., . [Robert G. Wilson v, Oct 04 2010]

Examples

			a(9)=1358 because 9*1358=12222 is the smallest multiple of 9 whose decimal digits are all 0, 1 or 2.
		

Crossrefs

n*a(n) yields sequence A181060.

Programs

  • Mathematica
    f[n_] := Block[{id = {0, 1, 2}, k = 1}, While[ Union@ Join[id, IntegerDigits[k*n]] != id, k++ ]; k]; Array[f, 76] (* Robert G. Wilson v, Oct 04 2010 *)
  • PARI
    a(n)=my(k=n,t);while(1,t=vecsort(eval(Vec(Str(k))),,8);if(t[#t]<3,return(k/n),k+=n)) \\ Charles R Greathouse IV, Sep 05 2011
    
  • PARI
    anydiggt2(n)=if(n<2,0,while(n>0,if(n%10>2,return(1));n\=10);0)
    a(n)={local(prd,ms=[],rems=[],msn,remsn,pow=10,maxm);
      if(n<=0,return(0));
      while(n%10==0,n\=10);
      maxm=if(n%10==5,5,if(n%2==1,3,4));
      for(d=1,9,if(!anydiggt2(prd=d*n),return(d));
        if(prd%10<=2,ms=concat(ms,[d]);rems=concat(rems,[prd\10])));
      while(1,
        msn=listcreate(maxm*#ms);remsn=listcreate(maxm*#ms);
        for(d=0,9,
          for(k=1,#ms,
            if(!anydiggt2(prd=d*n+rems[k]),return(d*pow+ms[k]));
            if(prd%10<=2,listput(msn,d*pow+ms[k]);listput(remsn,prd\10))));
        ms=Vec(msn);rems=Vec(remsn);pow*=10;print1("."))}

Formula

If a(n)=k, then a(10n)=k. [Robert G. Wilson v, Oct 04 2010]

A181060 a(n) is the smallest positive multiple of n whose decimal digits are all 0, 1 or 2.

Original entry on oeis.org

1, 2, 12, 12, 10, 12, 21, 112, 12222, 10, 11, 12, 221, 112, 120, 112, 102, 12222, 1102, 20, 21, 22, 1012, 120, 100, 1222, 21222, 112, 1102, 120, 2201, 1120, 1122, 102, 210, 22212, 111, 1102, 10101, 120, 11111, 210, 2021, 220, 122220, 1012, 1222, 1200
Offset: 1

Author

Herman Beeksma, Oct 01 2010

Keywords

Examples

			a(9)=12222 because 12222 is the smallest multiple of 9 whose decimal digits are all 0, 1 or 2.
		

Crossrefs

a(n)/n yields sequence A181061.

Programs

  • Mathematica
    With[{pms=Rest[Flatten[FromDigits/@Tuples[{0,1,2},6]]]},Table[ SelectFirst[ pms, Divisible[ #,n]&],{n,50}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2017 *)
  • PARI
    a(n) = my(k=1); while(vecmax(digits(k*n))>2, k++); k*n; \\ Michel Marcus, May 17 2020

A134857 Numbers that can be written as (a^2-1)(b^2-1) in four or more distinct ways.

Original entry on oeis.org

241920, 1048320, 10200960, 25724160, 37255680, 93139200, 123963840, 245044800, 588107520, 819786240, 1407893760, 1871251200, 3758169600, 5886558720, 8553283200, 10783342080, 13470367680, 19769460480, 30791819520, 40446806400
Offset: 1

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856. Contains A134858 as a subsequence.

Examples

			241920 = (4^2-1)(127^2-1) = (7^2-1)(71^2-1) = (9^2-1)(55^2-1) = (17^2-1)(29^2-1).
		

Crossrefs

A134856 Numbers that can be written as (a^2-1)(b^2-1) in three or more distinct ways.

Original entry on oeis.org

2880, 27720, 40320, 49920, 63360, 98280, 241920, 282744, 491400, 547200, 604800, 950400, 970200, 1048320, 1370880, 1614600, 1774080, 2489760, 2608320, 2882880, 2923200, 3931200, 4817400, 6126120, 7338240, 7673400, 8426880, 10200960
Offset: 1

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Contains A134857 and A134858 as subsequences.

Examples

			2880 = (2^2-1)(31^2-1) = (3^2-1)(19^2-1) = (5^2-1)(11^2-1).
		

A134858 Numbers that can be written as (a^2 - 1)(b^2 - 1) in five or more distinct ways.

Original entry on oeis.org

588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
Offset: 1

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856 and A134857.
Depending on the interpretation of A057535, this is either the same or a supersequence of A057535. [R. J. Mathar, Oct 16 2009]
The next term (if it exists) is greater than 2^70.

Examples

			588107520 = (13^2 - 1)(1871^2 - 1) = (17^2 - 1)(1429^2 - 1) = (55^2 - 1)(441^2 - 1) = (79^2 - 1)(307^2 - 1) = (129^2 - 1)(188^2 - 1).
		

A108066 Number of distinct ways to dissect a square into n rectangles of equal area.

Original entry on oeis.org

1, 1, 2, 6, 18, 65, 281, 1343, 6953, 38023
Offset: 1

Author

Hans Riesebos (hans.riesebos(AT)wanadoo.nl) and Herman Beeksma, Jun 03 2005

Keywords

Comments

"Distinct" here means that dissections differing only by a rotation and/or reflection are not counted as different (see A189243).
The first time the pieces can be made to all have different shapes (but the same area) is at n=7 - see Descartes (1971) and the illustration; also Wells, Weisstein. - N. J. A. Sloane, Dec 05 2012

Examples

			There are six ways to dissect a square into four rectangles of equal area, so a(4)=6:
+-+-----+ +-+-+---+ +-+-----+ +-+-+-+-+ +-+---+-+ +---+---+
| |     | | | |   | | |     | | | | | | | |   | | |   |   |
| |     | | | |   | | |     | | | | | | | |   | | |   |   |
| +--+--+ | | |   | | +-----+ | | | | | | |   | | |   |   |
| |  |  | | | +---+ | |     | | | | | | | +---+ | +---+---+
| |  |  | | | |   | | |_____| | | | | | | |   | | |   |   |
| |  |  | | | |   | | |     | | | | | | | |   | | |   |   |
| |  |  | | | |   | | |     | | | | | | | |   | | |   |   |
+-+--+--+ +-+-+---+ +-+-----+ +-+-+-+-+ +-+---+-+ +---+---+
		

References

  • David Wells, Penguin Dictionary of Curious and Interesting Geometry, 1991, pp. 15-16.

Crossrefs

A100664 Number of inequivalent ways to dissect a square into n rectangles of equal perimeter.

Original entry on oeis.org

1, 1, 2, 6, 16, 50, 177, 664, 2532, 9785
Offset: 1

Author

Herman Beeksma and Hans Riesebos (hans.riesebos(AT)wanadoo.nl), Aug 04 2005

Keywords

Comments

Dissections differing only by rotations and/or reflections are not counted as distinct. - N. J. A. Sloane, Dec 06 2012

Examples

			There are six ways to dissect a square into four rectangles of equal perimeter, so a(4)=6.
		

Crossrefs

Cf. A108066.