cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063067 Numbers expressible as (a^2-1)(b^2-1) in at least 2 distinct ways (b>=a>1).

Original entry on oeis.org

360, 504, 2304, 2520, 2880, 3465, 5040, 5400, 7920, 9360, 12285, 12600, 12672, 13440, 14400, 17325, 20160, 23040, 27720, 28224, 29400, 30600, 32760, 35640, 38080, 40320, 42840, 47880, 48384, 49920, 51480, 57960, 60480, 63360, 72072
Offset: 1

Views

Author

Henry Bottomley, Jul 08 2001

Keywords

Examples

			360 is on the list since 360 = (2^2-1)(11^2-1) = (4^2-1)(5^2-1).
		

Crossrefs

A057535 Numbers expressible as (a^2 - 1)*(b^2 - 1) in 5 distinct ways.

Original entry on oeis.org

588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
Offset: 1

Views

Author

K. S. Brown (ksbrown(AT)seanet.com), Fred W. Helenius (fredh(AT)ix.netcom.com), Dean Hickerson, Randall L Rathbun

Keywords

Comments

The next term (if it exists) is greater than 2^70.

Crossrefs

Cf. A134856, A134857, A134858 (identical?).

Programs

  • PARI
    { f(a,b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6,x,[0,0]); clear=ans; { g(a) = b=divisors(a*a-1); l=length(b); b=b+vector(l,x,a); for(x=1,l/2,c=4*a*b[x]*(a+1)*(a-1)*(b[x]+1)*(b[x]-1)*(a*b[x]-1)/((b[x]-a)*(b[x]-a));
    d=floor(sqrt(sqrt(c))); count=1; for( y=2,d, if (c%(y*y-1)==0,e=ceil(sqrt(c/(y*y-1))); if (f(y,e)==c,ans[count]=[y,e]; count=count+1,),); ); if ( count>5,print("g:",a," ",c," ",ans); ans=clear,); ); } { find()= for(n=560,10001,print(n); g(n)); }
    Store program as text file, load gp, \r textfilename and then run function find() to search for a 7th entry.
    
  • PARI
    { f(a,b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6,x,[0,0])

A063068 Smallest number expressible as (a^2-1)(b^2-1) in at least n distinct ways [with b>=a>1].

Original entry on oeis.org

9, 360, 2880, 241920, 588107520
Offset: 1

Views

Author

Henry Bottomley, Jul 08 2001

Keywords

Comments

Note that each term is a multiple of the preceding term (at least up to a(5)).

Examples

			a(4)=241920 since 241920 =(4^2-1)(127^2-1) =(7^2-1)(71^2-1) =(9^2-1)(55^2-1) =(17^2-1)(29^2-1)
		

Crossrefs

A134857 Numbers that can be written as (a^2-1)(b^2-1) in four or more distinct ways.

Original entry on oeis.org

241920, 1048320, 10200960, 25724160, 37255680, 93139200, 123963840, 245044800, 588107520, 819786240, 1407893760, 1871251200, 3758169600, 5886558720, 8553283200, 10783342080, 13470367680, 19769460480, 30791819520, 40446806400
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856. Contains A134858 as a subsequence.

Examples

			241920 = (4^2-1)(127^2-1) = (7^2-1)(71^2-1) = (9^2-1)(55^2-1) = (17^2-1)(29^2-1).
		

Crossrefs

A134856 Numbers that can be written as (a^2-1)(b^2-1) in three or more distinct ways.

Original entry on oeis.org

2880, 27720, 40320, 49920, 63360, 98280, 241920, 282744, 491400, 547200, 604800, 950400, 970200, 1048320, 1370880, 1614600, 1774080, 2489760, 2608320, 2882880, 2923200, 3931200, 4817400, 6126120, 7338240, 7673400, 8426880, 10200960
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Contains A134857 and A134858 as subsequences.

Examples

			2880 = (2^2-1)(31^2-1) = (3^2-1)(19^2-1) = (5^2-1)(11^2-1).
		

Crossrefs

A134858 Numbers that can be written as (a^2 - 1)(b^2 - 1) in five or more distinct ways.

Original entry on oeis.org

588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
Offset: 1

Views

Author

Herman Beeksma, Nov 13 2007

Keywords

Comments

Subsequence of A134856 and A134857.
Depending on the interpretation of A057535, this is either the same or a supersequence of A057535. [R. J. Mathar, Oct 16 2009]
The next term (if it exists) is greater than 2^70.

Examples

			588107520 = (13^2 - 1)(1871^2 - 1) = (17^2 - 1)(1429^2 - 1) = (55^2 - 1)(441^2 - 1) = (79^2 - 1)(307^2 - 1) = (129^2 - 1)(188^2 - 1).
		

Crossrefs

A372497 Positive integers of the form k^2 - 1 that are the product of two other distinct positive integers of the form k^2 - 1.

Original entry on oeis.org

24, 120, 360, 840, 960, 1680, 3024, 4224, 5040, 7920, 11880, 17160, 22800, 24024, 32760, 36480, 43680, 57120, 70224, 73440, 83520, 93024, 116280, 121800, 143640, 175560, 201600, 212520, 241080, 255024, 303600, 330624, 358800, 421200, 491400, 570024, 591360
Offset: 1

Views

Author

Ely Golden, May 03 2024

Keywords

Comments

This sequence is the sequence of possible c^2 - 1 values of all triples (a,b,c) of integers > 1 such that (a^2 - 1)*(b^2 - 1) = c^2 - 1.

Examples

			120 is a term since 120 = 15*8 = (4^2 - 1)*(3^2 - 1) and 120 = 11^2 - 1.
		

Crossrefs

Intersection of A005563 and A063066.

Programs

  • Mathematica
    Rest[Take[With[{k2=Range[500]^2-1},Select[Union[Times@@@Subsets[k2,{2}]],IntegerQ[Sqrt[#+1]]&]],50]] (* Harvey P. Dale, Apr 20 2025 *)
  • PARI
    isok1(k) = issquare(k+1);
    isok2(k) = fordiv(k, d, if (isok1(d) && isok1(k/d), return(1)));
    isok(k) = isok1(k) && isok2(k); \\ Michel Marcus, May 04 2024
  • Python
    from math import isqrt
    def is_perfect_square(n): return isqrt(abs(n))**2 == n
    limit = 10**17
    sequence_entries = set()
    for a in range(2, isqrt(isqrt(limit))+1):
        u = a**2 - 1
        for b in range(a+1, isqrt(limit//u+1)+1):
            v = b**2 - 1
            if(is_perfect_square(u*v + 1)): sequence_entries.add(u*v)
    sequence_entries = sorted(sequence_entries)
    for i, j in enumerate(sequence_entries, 1):
        print(i, j)
    

Extensions

Definition clarified by Harvey P. Dale, Apr 20 2025
Showing 1-7 of 7 results.