cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007626 Sum of divisors of superabundant numbers (A004394).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 360, 546, 744, 1170, 2418, 2880, 4368, 5952, 9360, 19344, 39312, 59520, 99944, 112320, 232128, 471744, 714240, 1199328, 1451520, 2437344, 2926080, 3249792, 6604416, 9999360
Offset: 1

Views

Author

Keywords

Comments

Local maxima of sigma(n), the sum of divisors function A000203.
Same as A063072 for the first 19 terms. - T. D. Noe, Jul 01 2008

Crossrefs

See A034885 and A002093 for another version.

Programs

  • Mathematica
    Reap[ For[ n=1; a=0, n <= 3*10^6, n++, s = DivisorSigma[1, n]; b = s/n; If[ b>a, a=b; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Apr 02 2013 *)
    Join[{1},DeleteDuplicates[Select[{#[[1]],#[[2]],#[[2]]/#[[1]]}&/@Table[ {n,DivisorSigma[1,n]}, {n,10^6}],#[[3]]>1&],GreaterEqual[#1[[3]],#2[[3]]]&][[All,2]]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, Oct 04 2022 *)

Formula

a(n) = A000203(A004394(n)). - Amiram Eldar, Sep 25 2021

A256259 Sum of divisors of the minimal numbers (A007416).

Original entry on oeis.org

1, 3, 7, 12, 28, 31, 60, 91, 124, 168, 127, 360, 403, 546, 508, 744, 1170, 1651, 2418, 2880, 2821, 3048, 2047, 4368, 3751, 5952, 9360, 9906, 8188, 12493, 8191, 19344, 15367, 22568, 22506, 24384, 28800, 26611, 39312, 32764, 51181, 59520, 49128, 79248, 99944, 92202, 112320, 116281, 106483, 160797
Offset: 1

Views

Author

Omar E. Pol, Apr 20 2015

Keywords

Comments

Has a symmetric representation in the same way as A000203 and all its subsequences.

Crossrefs

Programs

  • Mathematica
    (* The d-th element in list minDiv[n, b] is the smallest numbers k<=n with exactly d<=b divisors, otherwise it is zero. Computation stops as soon as either inequality fails. *)
    minDiv[n_, b_] :=
    Module[{list = Array[0 &, b], k = 1, d},
      While[k <= n, d = DivisorSigma[0, k];
       If[d <= b && list[[d]] == 0, list[[d]] = k];
       If[d <= b, k++, k = n + 2]]; list]
    a256259[n_, b_] :=
    Map[DivisorSigma[1, #] &, Sort[Select[minDiv[n, b], # != 0 &]]]
    a256259[100000, 300] (* computes the first 60 elements of the sequence *)
    (* Hartmut F. W. Hoft, Apr 27 2015 *)

Formula

a(n) = A000203(A007416(n)).

A182941 a(n) = sum of divisors of A094348(n).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 195, 360, 546, 744, 1170, 1344, 2418, 2880, 4368, 5952, 9360, 19344, 28800, 39312, 59520, 79248, 99944, 112320, 120960, 180048, 203112, 232128, 345600, 471744, 714240, 950976, 1199328, 1451520, 1572480, 2160576, 2437344, 2926080
Offset: 1

Views

Author

Peter Luschny, Jan 03 2011

Keywords

Comments

a(10) = 195 is the first term which is neither in A007626 nor in A063072.

Crossrefs

Programs

  • Maple
    seq(numtheory[sigma](A094348[i]),i=1..42);

Formula

a(n) = A000203(A094348(n)). - Omar E. Pol, Dec 08 2019

Extensions

a(37)-a(41) from Jinyuan Wang, Mar 02 2020
Showing 1-3 of 3 results.