A063083 Number of permutations of n elements with an odd number of fixed points.
0, 1, 0, 4, 8, 56, 304, 2192, 17408, 156928, 1568768, 17257472, 207087616, 2692143104, 37689995264, 565349945344, 9045599092736, 153775184642048, 2767953323425792, 52591113145352192, 1051822262906519552, 22088267521037959168, 485941885462833004544
Offset: 0
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n=0..100
Crossrefs
Cf. A062282.
Programs
-
Mathematica
nn = 20; d = Exp[-x]/(1 - x); Range[0, nn]! CoefficientList[Series[Sinh[x] d, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2012 *) a[n_] := -n!/2 Sum[(-2)^i/i!, {i, 1, n}] Table[a[n], {n, 0, 20}] (* Gerry Martens , May 06 2016 *)
-
PARI
{ for (n=0, 100, if (n, a=n*a + (-2)^(n-1), a=0); write("b063083.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 17 2009
Formula
E.g.f.: sinh(x) * exp(-x)/(1-x). Asymptotic expression: a(n) ~ n! * (1 - 1/e^2)/2 i.e. as n goes to infinity the fraction for permutations that has an odd number of fixed points is about (1 - 1/e^2)/2 = 0.432332...
a(n) = n! - A062282(n) = n! - sum k=0 ... [n/2] sum l=0...n-2k (-1)^l * n!/((2k)! * l!)
Recurrence: a(n) = n*a(n-1)+(-2)^(n-1). - Vladeta Jovovic, Apr 11 2003
More generally, e.g.f. for number of degree-n permutations with an odd number of k-cycles is sinh(x^k/k)*exp(-x^k/k)/(1-x). - Vladeta Jovovic, Jan 31 2006
a(n) = (Gamma(n+1) - Gamma(n+1,-2)*exp(-2))/2, where Gamma(a,x) is the incomplete gamma function. - Ilya Gutkovskiy, May 06 2016
Extensions
More terms from Wouter Meeussen, Aug 09 2001