cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063083 Number of permutations of n elements with an odd number of fixed points.

Original entry on oeis.org

0, 1, 0, 4, 8, 56, 304, 2192, 17408, 156928, 1568768, 17257472, 207087616, 2692143104, 37689995264, 565349945344, 9045599092736, 153775184642048, 2767953323425792, 52591113145352192, 1051822262906519552, 22088267521037959168, 485941885462833004544
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 05 2001

Keywords

Crossrefs

Cf. A062282.

Programs

  • Mathematica
    nn = 20; d = Exp[-x]/(1 - x); Range[0, nn]! CoefficientList[Series[Sinh[x]  d, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2012 *)
    a[n_] := -n!/2 Sum[(-2)^i/i!, {i, 1, n}]
    Table[a[n], {n, 0, 20}] (* Gerry Martens , May 06 2016 *)
  • PARI
    { for (n=0, 100, if (n, a=n*a + (-2)^(n-1), a=0); write("b063083.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 17 2009

Formula

E.g.f.: sinh(x) * exp(-x)/(1-x). Asymptotic expression: a(n) ~ n! * (1 - 1/e^2)/2 i.e. as n goes to infinity the fraction for permutations that has an odd number of fixed points is about (1 - 1/e^2)/2 = 0.432332...
a(n) = n! - A062282(n) = n! - sum k=0 ... [n/2] sum l=0...n-2k (-1)^l * n!/((2k)! * l!)
Recurrence: a(n) = n*a(n-1)+(-2)^(n-1). - Vladeta Jovovic, Apr 11 2003
More generally, e.g.f. for number of degree-n permutations with an odd number of k-cycles is sinh(x^k/k)*exp(-x^k/k)/(1-x). - Vladeta Jovovic, Jan 31 2006
a(n) = (Gamma(n+1) - Gamma(n+1,-2)*exp(-2))/2, where Gamma(a,x) is the incomplete gamma function. - Ilya Gutkovskiy, May 06 2016

Extensions

More terms from Wouter Meeussen, Aug 09 2001