A063091 Prime(n) such that gcd(1+prime(n+1), 1+prime(n)) = gcd(-1+prime(n+1), -1+prime(n)).
2, 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 283, 311, 317, 337, 347, 419, 431, 461, 521, 547, 569, 577, 599, 617, 641, 659, 773, 787, 809, 821, 827, 857, 863, 881, 1019, 1031, 1049, 1061, 1091, 1129, 1151, 1153
Offset: 1
Keywords
Examples
p=101 is here because gcd(102,104) = 2 = gcd(100,102).
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A058263.
Programs
-
Mathematica
lst={};Do[p0=Prime[n];p1=Prime[n+1];If[GCD[p0-1,p1-1]==GCD[p0+1,p1+1],AppendTo[lst,p0]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 11 2010 *) Transpose[Select[Partition[Prime[Range[200]],2,1],GCD[First[#]+1, Last[#]+1] == GCD[First[#]-1,Last[#]-1]&]][[1]] (* Harvey P. Dale, Jan 22 2012 *)
-
PARI
{ n=0; for (m=1, 10^9, if(gcd(prime(m+1) + 1, prime(m) + 1) == gcd(prime(m+1) - 1, prime(m) - 1), write("b063091.txt", n++, " ", prime(m)); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 17 2009